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Advances in next-generation sequencing (NGS) technologies have resulted in 

significant reduction of cost per sequenced base pair and increase in sequence data 

volume. On the other hand, most currently used NGS technologies produce relatively 

short sequence reads (50 - 150 bp) compared to Sanger sequencing (~700 bp). This 

represents an additional challenge in data analysis, because shorter reads are more 

difficult to assemble. At this point, production of sequencing data outpaces our capacity 

to analyze them. Newer NGS technologies capable of producing longer reads are

emerging, which should simplify and speed up genome assembly. However, this will 

only increase the number of sequenced genomes without structural and functional 

annotation. In addition to multiple scientific initiatives to sequence thousands of 

genomes, personalized medicine centered on sequencing and analysis of individual 

human genomes will become more available. This poses a challenge for computer 

science and emphasizes the importance of developing new computational algorithms, 

methodology, tools, and pipelines. This dissertation focuses on development of these 

software tools, methodologies, and resources to help address the need for processing of 
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volumes of data generated by new sequencing technologies. The research concentrated on 

genome structure analysis, individual variation, and comparative biology. This 

dissertation presents: (1) the Short Read Classification Pipeline (SRCP) for preliminary 

genome characterization of unsequenced genomes; (2) a novel methodology for 

phylogenetic analysis of closely related organisms or strains of the same organism 

without a sequenced genome; (3) a centralized online resource for standardized gene 

nomenclature. Utilizing the SRCP and the methodology for initial phylogenetic analysis 

developed in this dissertation enables positioning the organism in the evolutionary 

context. This should facilitate identification of orthologs between the species and 

paralogs within the species even in the initial stage of the analysis when only exome is 

sequenced and, thus, enable functional annotation by transferring gene nomenclature 

from well-annotated 1:1 orthologs, as required by the online standardized gene 

nomenclature resource developed in this dissertation. Thus, the tools, methodology, and 

resources presented here are tied together in following the initial analysis workflow for 

structural and functional annotation.
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CHAPTER I

INTRODUCTION

Computerization of analysis of biological data is key to accelerated research in 

many areas of biology, including the ones discussed in this dissertation: genome structure 

analysis, analysis of individual variation, and comparative biology.  In this chapter, I

review advantages and limitations of next-generation sequencing and the effects it has on 

biology. One of its major effects is production of large volumes of data that are difficult 

to manage and analyze due to their size. Further, I will show how the work presented in 

this dissertation helps tackle analysis of "big data" in biology.

Next-generation sequencing

Rapid advances in sequencing technology revolutionize many areas of biological 

research. In the last decade the sequencing cost per base has been reduced by more than 

100,000 fold [1].  The speed of sequencing has also dramatically increased due to 

massively parallel approach used in the next-generation sequencers where millions of 

sequencing reactions with real-time sequence identification can be performed 

simultaneously [2]. Next-generation sequencing generally refers to sequencing 

technologies that originated after Sanger capillary sequencing, which required cloning of 

DNA fragments (digested by enzymes or mechanically sheared) into DNA vectors 
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(Bacterial Artificial Chromosome (BAC), Yeast Artificial Chromosome (YAC), etc.) for 

sample amplification. 

Second-generation sequencing

The second generation of sequencing technologies (Roche 454, Illumina, SOLiD, 

and Polonator) overcame the need for vectors by performing in vitro cloning

amplification. In this process fragmented single-stranded DNA (ssDNA) is ligated to 

adapters (on both ends), followed by annealing of the adapters to complementary ssDNA 

on the sequencing media (solid surface or beads). The following polymerase chain 

reaction (PCR) creates clusters of amplified ssDNA.  The sequence identification is based 

on the polymerase reaction that builds the complementary strand in each of the ssDNA 

sequences of the amplified cluster. Sequencing, in which such polymerase reaction takes 

place, is called Sequencing by Synthesis [3].

Limitations of the second-generation technologies

Optical methods, such as pyrosequencing or use of fluorescently labeled

deoxynucleotide triphosphates (dNTPs), are utilized to determine incorporated 

nucleotides. These technologies are using the process of introduction of a single type of 

labeled nucleotides (either A, T, C, or G) at a time to all sequencing reactions in an

amplified cluster of ssDNA to detect the average amplified signal from all reactions. 

However, with every subsequent incorporation-cycle the signal quality drops due to the 

lag in incorporation of nucleotides from the previous cycles. This loss of phasing 

(maintaining synchronous synthesis among identical DNA templates) leads to quality 
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degradation as sequencing progresses toward the 3' end and limits the read lengths 

produced by these technologies [3]. Other sources of errors in PCR-based sequencing are 

associated with the PCR process, which introduces editing errors caused by DNA 

polymerase-catalyzed enzymatic copying and errors due to DNA thermal damage [4]. 

Third-generation sequencing, advantages and limitations

These problems are addressed by the third generation sequencing technologies

(Pacific Biosciences SMRT (http://www.pacificbiosciences.com/) and Helicos 

(http://www.helicosbio.com/)) allowing single molecule sequencing without PCR 

amplification. Regardless, when optical identification methods are used in Sequencing by 

Synthesis, they introduce their own limitations, such as contamination of labeled dNTPs 

by unlabeled dNTPs (e.g., impurities or hydrolysis products), stray signals from dye 

molecules that stick to the sequencing surfaces, limitations due to camera read rate 

capacity, etc. [3]. These issues were addressed in technologies that utilize ionic current 

for sequence identification. One of the first instruments on the market to utilize this 

technology was IonTorrent (http://www.iontorrent.com/). While IonTorrent still relies on 

PCR amplification, which makes it susceptible to problems with the second-generation 

technologies described above, it identifies the attached nucleotides by change in the pH

level associated with the sequencing reaction. 

Fourth-generation sequencing

The fourth generation, nanopore-based sequencing technology (Oxford Nanopore 

(http://www.nanoporetech.com/), Genia (http://geniachip.com/), Nabsys 
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(http://nabsys.com/)) is still in development, but it will potentially address the issues in 

the previous technologies described above. As described in the introductory materials 

presented on the web sites of these three companies, nanopore-based sequencing 

combines single molecule processing with ion current-based sequence identification.

Effects of next-generation sequencing on biology

As shown above, the recent trends in the third- and fourth-generation sequencing 

technologies are likely to result in increases in read length and sequencing quality, which 

will make whole genome sequencing faster and less computationally intensive in the 

future. Availability of long and error-free reads would make it easier to sequence whole 

genomes of patients in clinical research, regardless of long stretches of DNA varying 

from the reference genome sequence, thus, making personalized medicine more 

available. Whole genome sequencing of patients will reveal DNA variations in their 

personal genomes, which will allow customized healthcare, screening for genetically 

predisposed risks, and preventive treatment [5]. Of course, a simple knowledge of the 

entire genome sequence of an individual is not enough to make educated decisions about 

personalized healthcare for this individual. A systems biology approach, which considers 

predictive quantitative models for biological systems in a holistic rather than reductionist 

manner, is necessary to understand how various DNA variations, e.g., gene mutations, 

present in a given genome can affect gene expression and alter biological pathways [6, 7].

Gene expression profiling of diseased tissues can reveal the stage of the disease and the 

progress in its treatment. Advances in gene therapy, such as genome editing [8], can be 

used to directly correct the disease causing DNA mutations in targeted cells. 
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Big data

The advent of personalized medicine as well as scientific initiatives aiming for

sequencing of thousands of new genomes, such as Genome 10K project [9] produce an 

unprecedented volume of data waiting to be analyzed. This poses a challenge for 

computer science and emphasizes the importance of developing new computational 

algorithms, methodology, tools, and pipelines. Note that open source program 

development, as well as utilizing open source journals for sharing information about 

availability of new methodology, programs, resources, etc., is extremely important for 

synergetic scientific research [10]. In the abundance of published research and tools, open 

source alternatives are likely to be considered first.   

How this dissertation addresses new challenges in data analysis

Genome structure analysis 

The research presented in this dissertation focuses on development of algorithms, 

methodologies, tools, and online resources to help make sense of available sequencing 

data. While easy and accurate whole genome assembly is still out of reach of the current 

sequencing technologies, genome structure analysis still plays an important role for: (1) 

identification of repeat elements for their further analysis in regulation, speciation and 

evolution [11, 12, 13, 14]; (2) identification of the expected percentages of DNA content 

for validation of future genome assembly [12, 14]; (3) identification of coding sequences 

for exome assembly [12, 13, 14]. Chapter II of this dissertation will introduce Short Read 

Classification Pipeline [14] that enables preliminary characterization of organisms 
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without a genome reference by identification of DNA content percentages of various 

classes of DNA.

Analysis of individual variation

Genetic variation among individual humans plays an important role in

personalized medicine research [15]. Individual variation is also essential for finding 

phylogenetic relationships among closely related organisms or strains of the same 

organism. Originally, phylogenetic analysis was done by utilizing trait tables with 

quantified morphological characteristics to identify evolutionary distance among the 

sampled species. The drawbacks of this approach are that a hypothesis must be made 

about evolutionary relevance of the traits that should be included [16] and that the same 

phenotypic trait can be acquired in unrelated lineages [17]. Availability of DNA/RNA 

sequencing made it possible to perform molecular phylogenetic analysis by identifying 

orthologous DNA or RNA sequences and performing multiple alignments of such 

orthologous sequences from all samples. Sequence variations can then be quantified in a 

distance matrix that is used to construct a phylogenetic tree. The orthologous sequences 

can be extracted using specific PCR primers followed by PCR amplification for 

sequencing [18]. The limitation of this method is that phylogeny of a species is 

determined on the basis of a single gene or a locus [19]. It is possible to combine 

sequence data from a large number of DNA loci to build a consensus phylogenetic tree 

[20], however, this would require substantial sequencing effort designing multiple PCR 

primers or utilizing a fragment polymorphism technique to size separate orthologous 

sequences [21]. Another approach is to use a genome-wide genetic variation 
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identification by targeting all genes, all microsatellites, etc. These methods employ 

various genetic markers such as microsatellites, RFLP (Restriction Fragment Length 

Polymorphisms), AFLP (Amplified Fragment Length Polymorphisms), RAPD 

(Randomly Amplified Polymorphic DNA), and VNTR (Variable Number Tandem 

Repeats) [22] to infer phylogeny in organisms without sequenced genomes. However, 

using SNPs for phylogenetic analysis is more advantageous because they are much more 

abundant than other markers (1 per 1000 bp in human, 1 per 500 bp in mouse [23], 

compared to 1 microsatellite in 100,000 bp for human [24], and 1 mutation per 50,000 bp 

to 1 per 450,000 bp for fragment length polymorphisms [25]) and they can be easily 

identified using next generation sequencing (NGS). On the other hand, finding SNPs 

requires knowledge of at least a partial reference genome sequence. This, however, adds 

additional precision in determining genetic variations among samples because the SNPs 

can be identified in reference sequences computationally determined to be homologous to 

all samples in the study. Therefore, for analysis of closely related strains, where finding 

as many genomic variations as possible in regions known to be homologous in all 

samples is very important, we will utilize SNP-based analysis. While whole genome 

sequencing (WGS) can be used for detection of individual variation, due to lower costs 

current clinical research concentrates on whole exome sequencing (WES), though there is 

an agreement that WGS will be predominantly used for individual variation research in 

the future because it provides additional information about genome structure and 

regulation [26]. The same is true about finding genetic variation between species. In this 

case, the major problem with using WGS is that many species do not have a reference 

genome sequenced. Contemporary sequencing efforts largely rely on the second-
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generation technologies, which are producing large volumes of short-reads (50 - 150 bp),

which are difficult to assemble, especially in the repetitive regions. Therefore, sequencing 

genomes of most eukaryotes is still a challenge and requires incorporation of long reads 

(Sanger, Pacific Biosciences SMRT , etc.) and/or construction of mate-pair read libraries 

with variable insert sizes. To avoid the costs and complexity of WGS, complementary 

DNA (cDNA) sequencing capturing transcript sequences can be used because the most 

informative genetic variations are located in the coding regions, since they are 

evolutionary constrained by the function of the proteins they encode [27]. It is likely that 

not all samples will have the same set of transcripts sequenced and that some of these 

transcripts will not be sequenced to their full length. To address this issue, partial 

transcript references homologous to all samples in the study can be assembled. Next-

generation sequencing makes it possible to provide significant read alignment coverage 

and detect coding sequences with very low expression levels, thus increasing the portion 

of the exome available for genetic variation analysis. Chapter III of this dissertation will 

cover methodology for utilizing RNA-seq reads for transcript assembly and phylogenetic 

analysis of closely related organisms without a reference genome.

Comparative biology and gene nomenclature

Advances in next generation sequencing are likely to facilitate generation of

thousands of new draft genome sequences in the near future [9]. As genome annotation 

efforts ensue, the role of comparative biology should become increasingly more

important. The existing orthology among the genes of the studied organisms should be 

identified to transfer gene nomenclature from 1:1 orthologs in well-annotated model 
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organisms to the organisms with less established gene annotation. It is important that 

such model organisms have standardized and unambiguous gene nomenclature to prevent 

spreading inconsistencies in gene naming to different organisms used in comparative 

genomics. Generally, when inconsistent gene nomenclature is used in research, it can 

cause confusion, duplicated effort, and errors. For example, two research groups may call 

the same gene two different gene names or use the same name for two unrelated genes 

and then use each other's results in their research. There should also exist one standard 

gene naming convention, so that all genes are named following the same rules, e.g., using 

brief and specific names that convey the character or function of the gene, using 

American spelling, avoiding tissue specificity or molecular weight designations. Symbols 

and synonyms should also be standardized. Following such a standardized naming 

convention (as opposed to calling a gene "smurf" or "pokemon") will ensure that the 

researchers will get the most meaningful information about the gene from its name, 

symbol, and synonym. Chapter IV of the dissertation will discuss creation, maintenance, 

and functionality of a centralized online resource for standardized chicken gene 

nomenclature. The importance of this resource is that aside from standardizing chicken 

nomenclature it can also be easily adapted for other model organisms with human 

orthologs supported by HUGO (Human Genome Organization) Gene Nomenclature 

Committee (HGNC) (http://www.genenames.org/). According to HGNC, there are

currently no Horse, Cow, Chimp, Macaque, Opossum, Platypus or Dog Gene 

Nomenclature Committees.
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1 Reprint from Chouvarine P., Saha S., Peterson D.G. (2008) An automated, high-
throughput sequence read classification pipeline for preliminary genome characterization. 
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Abstract

In the absence of a complete genome sequence, considerable insight into genome structure can be gained from survey sequencing of
genomic DNA. To facilitate high-throughput characterization of genome structure based on shotgun sequence reads, we have developed
an automated sequence read classification pipeline (SRCP). The SRCP uses a battery of novel and standard sequence analysis algorithms
along with a sophisticated decision tree to place reads into ‘‘best fit’’ functional/descriptive categories. Once ‘‘primed’’ with genomic
sequence data, the SRCP also permits estimation of gene/repeat enrichment afforded by reduced-representation sequencing techniques.
To our knowledge, the SRCP is the only tool that has been designed to provide a description of a genome or a genome component based
on sample sequence reads. In an initial test of the SRCP using sequence data from Sorghum bicolor, it was shown to provide results sim-
ilar in quality to results generated by manual classification. Although the SRCP is not a replacement for manual sequence characteriza-
tion, it can provide a rapid, high-quality overview of genome sequence content and facilitate subsequent annotation. The SRCP
presumably can be adapted for analysis of any eukaryotic genome.
� 2007 Elsevier Inc. All rights reserved.

Keywords: DNA; Sequence analysis; Transposon; Genome; Bioinformatics; Computational analysis; Genomics; Comparative

Although complete genome sequencing represents an
ideal means by which the genomes of organisms can be
compared, it is not currently economically feasible for most
eukaryotes. This is especially true for the numerous organ-
isms that have large, highly repetitive genomes including
many important plants and animals. With this said, sample
sequencing of random genomic DNA can be used to gain
considerable information about genome structure in lieu
of a complete sequence [1,2]. However, it is often difficult
for researchers to characterize the sequences they have
obtained, especially if they have generated large sequence
data sets for organisms for which previous sequencing
research has been limited.

At present, numerous automated and semiautomated
gene characterization programs are available [3,4]. Like-
wise, there are a growing number of programs designed
to characterize repetitive elements [5–7]. However, to our
knowledge, there is no program or pipeline designed to
provide an overview of the sequence composition of an
entire genome based on shotgun sequence reads. To permit
such characterization, we have constructed a sequence read
classification pipeline (SRCP)1 in which a battery of exist-
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ing and novel algorithms are used to place random geno-
mic query sequences into descriptive/functional sequence
categories. The SRCP calculates the fraction of base pairs
in each category, thus providing an overview of genome
structure while facilitating initial annotation of query
sequences (Fig. 1). In addition, the efficacy of reduced-rep-
resentation sequencing techniques [8,9] can be assessed by
comparing SRCP results for random genomic sequence
with SRCP results for gene- or repeat-enriched DNA. With
respect to basic configuration, the SRCP uses the program
BLAST (Basic Local Alignment Search Tool) to query
sequences against highly curated, custom local databases.
The BLAST data are filtered, stored in a relational data-
base, and analyzed to derive the final classification of each
query sequence. The results of the analysis are available via
a Web interface. The system is implemented as a series of
Perl scripts, database scripts/queries, and dynamic Web
pages.

Materials and methods

General considerations

1. Because our research is focused primarily on study of
seed plants (Phylum Spermatophyta), we developed the
SRCP for analysis of sequences from spermatophytes.
However, the basic SRCP structure can be adapted for
study of any organism or group of organisms.

2. The different sequence categories in the SRCP are based
on those used by Peterson and co-workers [10].

3. The addresses of public Web pages and databases not
generated as part of our research are given in Table 1.

4. Interested parties can obtain source codes and/or down-
loads of novel tools and access the contents of our local
sequence databases at http://www.mgel.msstate.edu/
tools.htm.

5. The version of BLAST (Linux-ia32, Version 2.2.14) used
in this pipeline was obtained from the National Center
for Biotechnology Information (NCBI).

Technologies

Traditionally, bioinformatics projects have used Linux/
Unix platforms. However, there are a number of powerful
and often neglected Windows-based software development
technologies that afford rich functionality without exten-
sive de novo programming. For this research, we devel-
oped a hybrid Linux and Windows system to use the
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Fig. 1. General overview of the sequence read classification pipeline (SRCP). (A) Query sequences are compared using BLAST (Basic Local Alignment
Search Tool) to the contents of two gene (light gray rectangles), four repeat (dark gray rectangles), and two organellar (white rectangles) highly curated,
local sequence databases. (B) For each query sequence, data from the BLAST analyses are evaluated with a decision tree algorithm that places that
sequence into a ‘‘best fit’’ descriptive gene, repeat, or organellar DNA category; those sequences that do not possess significant homology to sequences in
any of the local sequence databases are classified as unknown. (C) Two independent algorithms interrogate those sequences classified as gene or unknown
to see if they are possibly repetitive based on their frequency within the data set. Additionally, the unknown sequences are analyzed with tblastn to
determine if they share significant homology with nontransposon proteins. Based on these secondary analyses, some query sequences are reclassified. (D)
Each query sequence is placed into one of 11 final sequence categories. (E) The output of the SRCP is a graph (along with data and statistics) illustrating
the composition of the query sequence set.

Table 1
Database and Web page addresses

Database or Web
page

Web address

NCBI www.ncbi.nlm.nih.gov
Core Nucleotide DB www.ncbi.nlm.nih.gov/entrez/

query.fcgi?CMD=search&DB=nuccore
EST DB www.ncbi.nlm.nih.gov/entrez/

query.fcgi?CMD=search&DB=nucest
Entrez Help

Document
www.ncbi.nlm.nih.gov/entrez/query/static/help/
helpdoc.html

Display Formats www.ncbi.nlm.nih.gov/entrez/query/static/help/
Summary_Matrices.html#Display_Formats

Plastid Organelles www.ncbi.nlm.nih.gov/genomes/ORGANELLES/
plastids.html

Viridiplantae
Mitochondria

www.ncbi.nlm.nih.gov/genomes/ORGANELLES/
plants.html

The Inst. for
Genomic Res.

www.tigr.org/

TIGR Gene Index
FTP site

ftp://ftp.tigr.org/pub/data/tgi/

Canad. Bioinf. Help
Desk

gchelpdesk.ualberta.ca
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strengths of both operating systems. The power of the
Linux operating system lies in its robustness, scalability,
and high availability of compatible bioinformatics soft-
ware. Therefore, we chose to run Linux on the computa-
tional server that runs bioinformatics tools. With respect
to Windows tools, our database server runs SQL Server
2000 (SQL = Structured Query Language), and we use
its built-in Data Transformation Services (DTS) for bulk
upload of large XML (Extensible Markup Language) files
containing BLAST results. We also use DTS to imple-
ment the classification logic of the pipeline (see below).
Our Web server runs IIS (Internet Information Services)
6.0, which provides powerful native lock-down mecha-
nisms. The freely available URLScan program (http://
www.microsoft.com/technet/security/tools/urlscan.mspx)
can be used to secure all versions of IIS. Running IIS
allows us to use ASP.NET (ASP = Active Server Pages)
for our Web interface. ASP.NET provides a collection
of powerful and easily customizable Web controls, most
notably the ‘‘data grid’’ control, which is ideal for dis-
playing large data sets in a table structure with editable
cells.

Populating the repeat and organellar local databases

For all repeat and organellar sequences, we currently
download sequence information in the GenBank file for-
mat, which includes not only the sequence, its accession
number, and its title, but detailed annotation and Internet
links.

Spermatophyte transposon, rDNA, and centromere
sequences were extracted from the NCBI Core Nucleotide
Database by conducting searches using boolean text strings
(Supplementary Table 1). Search results were used to create
Transposon, rDNA, and Centromere local databases.

Chloroplast genome sequences were downloaded from
NCBI’s Plastid Organelles page and placed in the Chloro-
plast local database. Spermatophyte mitochondria
sequences were downloaded from NCBI’s Viridiplantae
Mitochondria page and placed in the Mitochondria local
database.

Each local database was assigned a version number
containing the date it was populated and a two- or
three-letter abbreviation indicating its contents (e.g., the
first version of the Mitochondria local database was des-
ignated MC_2005-10-01). We update these local databases
every 6 months.

Because many repeat sequences are found as annotated
sections within larger genomic sequence entries (i.e., are
not archived as individual GenBank entries), we developed
a Perl script that extracts repeat regions and their annota-
tions from select GenBank files. Extracted repeats were
placed in an Annotated Repeat local database. Because
of the large number of annotated repeats in plant whole-
genome sequences, for this initial test we limited our extrac-
tion to manually annotated sequences available for
Sorghum bicolor.

Populating the ‘‘gene sequence’’ local databases

Spermatophyte EST, cDNA, and mRNA (EMC)
sequences were originally extracted from the NCBI EST
Database and Core Nucleotide Database by conducting
searches using a boolean search string (Supplementary
Table 1). Because of the relatively large number of
retrieved sequences, sequence data were downloaded in
FASTA format [11] rather than in GenBank format.
Downloaded sequences then were BLASTed (blastn)
against the Chloroplast, Mitochondria, rDNA, Centro-
mere, and Transposon local databases (see above). Any
sequence exhibiting a significant hit (bit score = S 0 P 60)
to one of these local databases was eliminated from the
data set by Perl scripts. The remaining sequences were
deposited in the EMC local database.

Spermatophyte ‘‘gene’’ sequences in FASTA format
were downloaded from The Institute for Genome Research
(TIGR) Gene Index FTP (File Transfer Protocol) site.
Downloaded files were then scanned using a Perl script that
eliminates those entries containing the following ‘‘repeat-
affiliated’’ words in their titles (where asterisks indicate
wild-card characters): retrovirus, retroelement, transpos*,
gag, pol, polyprotein, env, reverse transcriptase, integrase,
stowaway, MITE, miniature, copia, gypsy, RT, helitron,
maverick, polinton, mul*, insertional, mitocondri*, chloro-
plast, capsid, and nucleocapsid. Remaining sequences were
then BLASTed against the Annotated Repeats, Chloro-
plast, Mitochondria, rDNA, Centromere, and Transposon
local databases. Sequences exhibiting a significant hit
(S 0 P 60) to one or more of these databases were eliminated
using the Perl scripts mentioned above. The remaining
sequences were deposited in the Gene Index local database.

Preparation of query sequences

Random S. bicolor genomic shotgun sequences (Gen-
Bank Accession Nos. CW512190–CW514008) [12] were
used as a sample ‘‘unfiltered’’ query sequence set. These
1819 sequences, collectively representing 1,088,783 bp, have
a mean length of 599 bp (SE ± 38). To study the effect of
sequence length on SRCP results, two representations of
the sequence data were initially tested. The first representa-
tion contained the original GenBank sequences without any
size adjustments (i.e., full-length query sequences); the sec-
ond representation contained the same sequences digitally
fragmented into 80- to 179-bp (average 105 bp ± SE 0.14)
pieces, that is, short-length query sequences. The level of
genome coverage of the short-length query sequence set
was the same as that of the full-length query sequence set.

To further explore relationships between query sequence
length and classification, a series of sequence subsets were
prepared. Each subset contained DNA taken from the ran-
dom S. bicolor genomic sequences used above. Names and
details of the subsets are given in Supplementary Table 2.

To examine the ability of the SRCP to estimate gene
and/or repeat enrichment afforded by Cot filtration (a
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reduced representation sequencing technique), Cot-filtered
sequences manually classified by Peterson et al. [10] (Gen-
Bank Accession Nos. AZ921847–AZ923007) were catego-
rized by the SRCP following analysis of the unfiltered
query sequences (see below).

Analysis of random genomic DNA query sequences

The basic steps in analysis of random genomic query
sequences are outlined in Fig. 1. Specifics are illustrated
in Fig. 2 and further detailed below.

Fig. 2. Steps in categorization of random genomic query sequences. (A) A query sequence set is compared with sequences in the eight local sequence
databases. In the diagram, the query sequence set is composed of 26 reads (represented by the lowercase letters a–z). BLAST (Basic Local Alignment
Search Tool) parameters are set so that only the three most significant hits (if applicable) for each query sequence are recorded. (B) A Perl script removes
unnecessary text and eliminates all hits with bit scores (S 0) < 45 from the BLAST output files. (C) A script uploads the resulting ‘‘summary’’ files to an
SQL Server database. (D) In the SQL database, the BLAST results from each local sequence database are stored in their own data table. In the diagram,
each BLAST results table lists only the names of query sequences that produce a hit to a sequence in that local sequence database (left most column) and
the bit scores of each query sequence’s (up to three) most significant hits. In reality, the data tables contain highly detailed information including each hit’s
accession number(s), annotation, and alignment information with the query sequence. (E) As a means of detecting repetitive sequences in the EMC (EST/
mRNA/cDNA) and Gene Index (GI) local sequence databases, an UPDATE query analyzes the EMC and Gene Index query BLAST data tables to see if
multiple query sequences are recognizing the same local database entry, an indication that the entry and the query sequences may represent repetitive
elements. On the basis of this analysis, some query sequences are marked as ‘‘Ambiguous Repetitive’’ (ar) or ‘‘Probable Repetitive’’ (pr). In the diagram,
arEMCs, prEMCs, arGIs, and prGIs are represented by light blue, violet, gold, and yellow cells, respectively. (F) A UNION query integrates the
information from all eight BLAST data tables. (G) A nested SELECT query eliminates hits with bit scores <60 and selects the best three hits from all of the
data tables for each query sequence. Each query sequence with at least one S 0 P 60 hit is included in the query result set. (H) A decision tree assigns each
query sequence in the query result set to a descriptive sequence category based on the (up to three) best hits for that sequence. The decision-making process
is relatively complex. Rectangles mark instances in which the decision tree assigns a query sequence to a sequence category that differs from the name of
the local sequence database to which that sequence shows its most significant hit. For simplicity, all query sequences that are ‘‘called’’ arEMCs or arGIs
are assigned to the ‘‘Possible Repeat’’ category, whereas all those ‘‘called’’ as prEMCs or prGIs are assigned to the ‘‘Probable Repeat’’ category. (I) Query
sequences that produce no significant hits to any of the local sequence databases are assigned to the temporary ‘‘No Hit’’ group. (J) Depending on the level
of genome coverage, either ReAS [7] or blastn is used to compare ‘‘No Hit’’ sequences to each other. Those query sequences marked as repetitive by ReAs

or exhibiting significant homology (S 0 P 60) to a number of other ‘‘No Hit’’ query sequences in excess of a mathematically defined threshold are placed in
the ‘‘Probable Repeat’’ category. (K) Remaining ‘‘No Hit’’ query sequences are electronically ‘‘translated’’ by a Perl script into proteins representing each
of the six potential reading frames. The program tblastn is then used to compare the translated ‘‘No Hit’’ query sequences into translated versions of the
EMC and GI local sequence databases. If a translated ‘‘No Hit’’ sequence produces a significant (S 0 P 60) tblastn hit to the EMC and/or GI local
sequence databases, it is reclassified based on the highest of its bit scores. If the highest EMC and Gene Index bit scores are equal, the ‘‘Gene Index’’
classification is selected. ‘‘No Hit’’ sequences that are not classified in step J or K are placed in the ‘‘Genome Sequences of Unknown Character’’ (GSUC)
category. (L) The query sequence set is displayed in a histogram showing the percentage of base pairs found in each sequence category.
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Blast

An entire query sequence set is BLASTed against each
of the local databases (Fig. 2A). We set –b and –v blastall

flags to 3 to collect only the top three hits for each
sequence, minimizing the sizes of the resulting XML files,
which, depending on the number of query sequences,
may otherwise become unmanageably large.

The output XML files are processed with a Perl script
that creates summary XML files. At this point, hits that
do not satisfy a certain minimal bit score threshold may
be filtered out using this Perl script. Summary files are then
used by DTS scripts to bulk upload the data to an SQL
Server database based on the corresponding XML Schema
Definition files. Results from each local database BLAST
comparison are stored in their own table (Figs. 2B and C).

First-round detection of repeat sequences

A common means used to assess the gene content of a
batch of query sequences is comparison of the query
sequences with ESTs. However, such an approach
requires considerable caution as EST databases often con-
tain numerous repetitive DNA sequences. Some of these
repeats are simply organellar, rDNA, or genomic repeat
sequences that were not eliminated during the mRNA iso-
lation process. Others are the expressed regions of trans-
posons such as retroelement genes. Because transposons
are typically found in numerous copies per genome and
contain only genes that promote their own propagation
or movement, they are typically classified as repeats.
Repeats are eventually ‘‘weeded out’’ of most EST dat-
abases, although it may be many years before the culling
process is complete.

Recognition of the same EST database entry by multiple
genomic query sequences is one means by which query
sequence repetitiveness has been estimated and repeat
sequence contaminants have been identified in ‘‘low-copy-
sequence’’ databases [10,13,14]. In this regard, several
SQL queries were used to identify EMC local database
entries that were the top significant EMC hit for multiple
query sequences. Assuming that query sequences in the
EMC BLAST table represent single-copy genes, the aver-
age number of times a query sequence would represent a
given gene can be predicted by dividing the number of
query sequences in the EMC BLAST table by the predicted
number of genes for the test organism. For example, in our
analysis of the full-length sorghum query sequences, 972
query sequences exhibited their most significant hit
(S 0 P 60) to the EMC local database. If sorghum has
roughly 25,000 nonrepetitive gene sequences like Arabidop-
sis [15], the average expected number of hits by an EMC-
recognized query sequence to any one of the hypothetical
sorghum genes is (972 ‚ 25,000 =) 0.0389. The probability
of multiple EMC-recognized query sequences recognizing a
particular ‘‘single-copy EST’’ (�gene) sequence by chance
can be roughly estimated using the Poisson probability dis-
tribution function,

PðX Þ ¼ lx � ðelX !Þ;
where P = probability, X = number of occurrences, and
l = is the population mean number of occurrences in a unit
of space or time [16]. If l = 0.0389 (see above), the proba-
bilities of two, three, four, and five EMC-recognized query
sequences tagging the same single-copy EST by chance are
7.3 · 10�4, 9.4 · 10�6, 9.2 · 10�8, and 7.1 · 10�10,
respectively.

In our implementation, the first value of X to produce
a P(X) less than 0.01 can be represented by the variable
Y. SQL queries mark a query sequence as an ‘‘Ambigu-
ous Repeat EMC’’ if its most significant hit is to an
EMC that is the most significant hit of Y query
sequences in the dataset. Any query sequence that has
its most significant hit to an EMC that is the most sig-
nificant hit for > Y query sequences is classified as a
‘‘Probable Repeat EMC’’.

The repeat detection procedure is applied to the Gene
Index local database as well with some query sequences
being reclassified as ‘‘Ambiguous Repeat Gene Index’’ or
‘‘Probable Repeat Gene Index’’.

Classification of query sequences with significant local

database BLAST hits

Local database BLAST results tables are combined in a
UNION query. Query sequences with no significant local
database hits are not included in the UNION query result
set, but, rather, are given the temporary classification of
‘‘No Hit’’ and used to generate a corresponding FASTA
file for further analysis (see below). For those query
sequences with at least one significant local database hit,
an SQL query (see Supplementary Materials, SQL Query)
is used to determine the (up to) three best hits with bit
scores P60 for each query sequence from the UNION
query result set (Figs. 2F–H).

A DTS script within SQL Server 2000 uses the output of
the query above and runs it through a decision tree that
places the results in a new table inwhich each query sequence
with at least one hit has three sets of columns for its (up to)
three best hits arranged from most significant to least signif-
icant (except in instances where two or more bit scores are
equal).Generation of this combined results table allows each
query sequence to be represented by a single record.Also, the
classification calculations are performed only once and
stored permanently in the results table precluding the need
to run complex SQL SELECT queries over large data tables
every time the results are fetched.

Each query sequence with at least one significant hit is
classified into one of 11 different categories (see Fig. 2)
using the decision tree algorithm mentioned above. The
heuristics of this algorithm are presented below:

1. The TIGR Gene Index contains sequences that have
been shown to code for protein (and, thus, are likely
to actually represent genes), whereas there is no such
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prerequisite for a sequence to be included in the EMC
Local Database. Consequently, Gene Index is
favored over EMC.

2. Because Gene Index and EMC local databases are
likely to contain some repeat sequences, significant
hits to organellar or repeat local databases are given
priority over Gene Index and EMC hits.

3. If the first hit’s bit score is at least 20% greater than
the next two hits (if any) and the preceding heuristics
are not violated, then the query sequence is classified
based on the first hit’s local database.

4. If the first and second hits or first and third hits are to
the same local database, then the query sequence’s
classification is set to this local database.

5. If a query sequence is not classified in step 1, 2, 3, or
4, it is given the temporary classification of Flag. In
the case of a Flag classification where the two best
hits are to different repeat local databases (Ambigu-
ous Repeat EMC, Ambiguous Repeat Gene Index,
Probable Repeat EMC, Probable Repeat Gene
Index, Annotated Repeats, Transposon, or Probable
Repeats), the query sequence is classified by the local
database to which it produces the highest bit score.
The Probable Repeat local database is used only
when analyzing reduced-representation sequences
(see below).

6. If the classification is still Flag and the two best hits
are to EMC and/or Gene Index, EMC is chosen if
it has a higher bit score. Otherwise, Gene Index is
chosen.

7. If the classification is still Flag, at least one of the hits
is to Chloroplast, and none are to rDNA, then the
classification is set to Chloroplast.

8. If the classification is still Flag, at least one of the hits
is to rDNA, and none are to Chloroplast, then the
classification is set to rDNA.

9. If the classification is still Flag and at least one of the
hits is to Centromere with a bit score within 20% of
the first hit’s bit score, the query sequence is given
the classification of Centromere.

10. If the classification is still Flag and all hits are to EMC,
Gene Index, Ambiguous Repeat EMC, Ambiguous
Repeat Gene Index, Probable Repeat EMC, or Proba-
ble Repeat Gene Index, the classification is set to the
repetitive database with the highest bit score.

11. For simplicity, those query sequences classified as
Ambiguous Repeat EMC or Ambiguous Repeat
Gene Index are placed in the ‘‘Possible Repeat’’ cat-
egory, whereas those query sequences classified as
Probable Repeat EMC and Probable Repeat Gene
Index are placed in the ‘‘Probable Repeat’’ category
(see Fig. 2).

If Flag query sequences remain, they can be manually
classified via the SRCP’s Web interface or the decision
tree algorithm can be modified. Although the decision
tree algorithm described above resulted in automated

classification of all Flag query sequences, other data
and/or local database sets may produce unresolved flags
indicating that fine tuning of the algorithm may be
appropriate.

Identifying repeats in the ‘‘No Hit’’ query sequences

The ‘‘No Hit’’ query sequence group can be further ana-
lyzed to identify novel repetitive elements based on their rel-
ative iteration in the query sequence set. If the genome
coverage is at least 1.58X, the ‘‘No Hit’’ query sequence
group is analyzed usingReAS [7], an ab initio repeat-finding
program that has proven especially robust in side-by-side
comparisons with other database-independent repeat identi-
fication tools (our personal observations).However, the gen-
ome coverage in sample sequence-based genome
characterization projects is often below the genome coverage
levels necessary for most repeat analysis programs. Conse-
quently, we developed a method to calculate which ‘‘No
Hit’’ query sequences are probable repeats when genome
coverage is below 1.58X. First, we determine the k-mer
length (sequence of length k) that will afford one chance in
a thousand that two random query sequences will share an
identical sequence of length k for a genome of size G. This
determination, based on Batzoglou [17], is made using the
following logic:

1. There are four nucleotides in DNA; thus, the total num-
ber of potential k-mers is 4k.

2. Becauseof thedouble-strandednatureofDNA,ak-mer and
its exact complement will be considered identical by blastn.
This means that the number of ‘‘unique k-mers’’ is 4k/2.

3. Hence, the probability of a given ‘‘unique k-mer’’ occur-
ring once in a genome of size G is 2G/4k.

4. The probability of a specific ‘‘unique k-mer’’ occurring
twice is 4G2/42k. The probability of any ‘‘unique k-
mer’’ occurring twice is 2G2/4k [i.e. (4G2/42k) * 4k/2].

5. A 0.001 probability that two reads will share an identical
sequence of length k by chance is equivalent to
1000 * 2G2/4k. Hence, the length of this unique k-mer
is k = ceiling(log4G

2 + log42000).

The ‘‘No Hit’’ query sequences are BLASTed (blastn)
against each other with the word size parameter set equal
to the k calculated as described above. Those query
sequences that share a k-mer with one or more other
‘‘No Hit’’ query sequences are detected. We then use the
Poisson distribution to determine a threshold contig depth
d [7] that is expected at error rate 0.1% for the level of gen-
ome coverage k as per the equation

p ¼ ðe�kkdÞ � d!

Those query sequences that share a unique k-mer to Pd

other ‘‘No Hit’’ query sequences (see Supplementary Table
3) are assigned to the ‘‘Probable Repeat’’ sequence cate-
gory (Fig. 1). When genome coverage is 60.04X (and
d + 1 = 2), the BLAST output file is parsed by a Perl script
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that classifies query sequences as ‘‘Probable Repeats’’ if
they have at least one hit to another query sequence, that
is, share a unique k-mer. For data sets with coverage values
between 0.05X and 1.57X, we use another Perl script that
classifies a query sequence as ‘‘Probable Repeat’’ only if
it has at least the minimal number of hits sharing the same
k-mer. ‘‘Probable Repeat’’ query sequences are then placed
into a consolidated BLASTable local database of the same
name. The Probable Repeats local database is used when
analyzing sequences that have been generated through re-
duced-representation sequencing (see below).

Classification of remaining ‘‘No Hit’’ query sequences

As shown in Fig. 2K, all remaining ‘‘No Hit’’ sequences
are translated by the Perl script three_frames.pl, available
from the Canadian Bioinformatics Help Desk, and com-
pared with sequences in the EMC and Gene Index Local
Databases using tblastn [18]. Such comparison can allow
detection of potential gene orthologs that have undergone
substantial divergence at the DNA level but have relatively
conserved amino acid sequences. Those query sequences
producing a significant tblastn hit (S 0 P 60) to an EMC
or Gene Index entry are reclassified as described in
Fig. 2. ‘‘No Hit’’ query sequences that do not produce a
significant tblastn hit to EMC and/or Gene Index local dat-
abases are placed in the sequence category ‘‘Genome
Sequence of Unknown Character.’’ This part of the analy-
sis is the most computationally expensive and may be per-
formed using BLAT [19] and/or a computer cluster.

Output

Once classification has been completed, summary statis-
tics are calculated. They can be viewed or saved in an Excel
file via a Web interface.

Contig assembly

After classification, all query sequences are collectively
analyzed using Phrap (www.phrap.org). An ACE file gener-
ated by Phrap is then parsed by Perl scripts that generate
two summary XML files::one of the summary XML files
contains data grouped by sequences and the other has data
grouped by contigs. Both of the XML files include padded
sequence data. These data are then bulk uploaded to the
SQL Server database. A graphical interface has been
designed to permit rapid visualization of contigs and the
classification assigned to each query sequence within a con-
tig. Desired outcomes of contig analysis include assembly of
genes, characterization of repeat families, correction of
potential erroneous classifications, and/or detection of
improperly labeled/annotated GenBank/TIGR entries.
With respect to error correction, visual inspection of assem-
bly reads aided by color-coded classifications (Supplemen-
tary Fig. 1) allows rapid detection of query sequences that
appear conspicuously out of place. If deemed appropriate,

classifications can be changed and the source of the original
classification traced back to the top three hits. It is antici-
pated that contigs visualized in this manner can potentially
limit the snowballing effect of incorrect annotations and
improve the quality of the local databases.

Analysis of reduced representation sequences

Analysis of reduced-representation query sequences clo-
sely follows the scheme used for genomic query sequences
(Fig. 2). However, the Probable Repeats local database
(see above) generated after analysis of random genomic
sequences is used as a ninth local database during the initial
classification. Additionally, when analyzing ‘‘NoHit’’ query
sequences, the genome sizeG is replacedby the fraction of the
genome in a particular reduced-representation component.
For example, according to Peterson et al. [10], the sorghum
genome consists of highly repetitive, moderately repetitive,
and single-/low-copy components that account for roughly
0.15, 0.41, and 0.24 of the genome, respectively. As the sor-
ghum genome is about 760 Mb [20], the highly repetitive
component of sorghum would contain 114 Mb of DNA
(i.e., 0.15 * 760 Mb) while moderately repetitive and single/
low-copy components would account for 311.6 and
182.4 Mb, respectively. To allow for consistent analysis of
all reduced representation-enriched fractions, repetitive
query sequences identified in reduced-representation data
sets during the ‘‘No Hit’’ repeat analysis are not added to
the Probable Repeats local database.

Results and discussion

SRCP analysis of random genomic sorghum query sequences

Initially, two representations of the same S. bicolor

sequence set were analyzed by the SRCP. The first repre-
sentation consisted of ‘‘full-length’’ genomic shotgun
sequence reads of a size typical of trimmed reads produced
via automated Sanger sequencing (mean length = 599 bp).
The second representation consisted of the original full-
length reads digitally fragmented into pieces between 80
and 179 bp in length (mean length = 105 bp) to simulate
short read lengths such as those produced by 454 DNA
sequencing [21]. The results of these analyses are summa-
rized in Fig. 3A. As shown, shorter query sequence lengths
resulted in an increase in the broadly defined Probable
Repeats and Genome Sequence of Unknown Character
categories with concomitant decreases in all other classes.
This suggests that shortening query sequence length to
about 100 bp often disrupts features that permit placement
of query sequences into more narrowly defined categories,
most notably EMC, Gene Index, and Transposon.

Comparison of Cot analysis and SRCP data

Cot analysis is the study of the kinetics of DNA reas-
sociation in solution. It can be used to learn much about
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the general structure of a genome, including genome size,
number and size of kinetic components, amount of repet-
itive DNA, amount of single-/low-copy DNA, and kinetic
complexities of unique and repeat components [22]. To
permit comparison with Cot analysis data, percentages
of Transposon, Annotated Repeat, Probable Repeat, Cen-
tromere, rDNA, and Possible Repeat categories were
grouped together and deemed percentage repetitive geno-
mic DNA. Conversely, the EMC and Gene Index catego-
ries probably represent single-/low-copy DNA and were
grouped as such. The contents of the Genome Sequence
of Unknown Character category may represent either
low-copy and/or a combination of repetitive and low-
copy sequences depending on the depth to which repeat
components have been sequenced. With a sufficiently
large sequencing depth or with fairly comprehensive
repeat local databases, the rigorous repeat search con-
ducted by the SRCP may afford a relatively high proba-
bility that sequences that end up in the Genome
Sequence of Unknown Character category are also low-
copy DNA. For this initial analysis, we conservatively
assumed that 50% of the Genome Sequence of Unknown
Character bases were low-copy DNA. Half the percentage
of the Genome Sequence of Unknown Character category
was added to the EMC and Gene Index percentages to
yield a rough estimate of genomic single-/low-copy
sequences. Based on SRCP analysis of full-length query
sequences, the percentage of repetitive DNA in the S.

bicolor genome is 58.2%, whereas short-length query
sequence analysis provides a repeat value of 45.9%. A pre-
vious Cot analysis of sorghum [10] suggested that the gen-
ome is composed of at least 56% repetitive DNA, a value

that falls within the range predicted by full- and short-
length SRCP analyses. The percentage of single-/low-copy
DNA as detected by SRCP analysis of full-length sor-
ghum query sequences is 32.7%, whereas that of short-
length query sequences is 29.4%. The Cot analysis sug-
gested that single-/low-copy DNA makes up at least
24% of the sorghum genome. Considering the various
biases inherent in Cot analysis and SRCP classification
techniques, the similarity in repeat and low-copy sequence
percentages between the two types of results is
encouraging.

The effect of query sequence length on classification

The SRCP uses an ‘‘all or nothing’’ approach, assigning
every base in a query sequence to a ‘‘best-fit’’ sequence cat-
egory. Although this is not a perfect classification solution,
dissection and annotation of the parts of each query
sequence would be a tremendous undertaking. As sug-
gested in Fig. 3A, short query sequence lengths decrease
the specificity of classification. Generation of single-read
query sequence lengths beyond 600–700 bp is not currently
feasible due to limitations of high-throughput capillary
electrophoresis, but it is likely that increasing query
sequence length much beyond this size would augment
the chances that a repeat and a unique sequence occur on
the same query sequence.

To further explore the effect of query sequence length on
classification, we prepared sequence subsets with different
query sequence lengths (Supplementary Table 2) and ana-
lyzed the subsets using the SRCP. The results of this anal-
ysis are summarized in Fig. 3B. In support of the
observations made in analysis of the full-length and
short-length query sequences, shorter query sequence
lengths limit placement of sequences into gene and repeat
classes. The L600 (600-bp sequence length) data set pro-
duces the highest levels of bases in the Gene (EMC and
Gene Index) and Repeat (Transposon, Annotated Repeat,
Probable Repeat, Possible Repeat, Centromere, and
rDNA) categories. Compared with the results of the L600
analysis, the L500 set shows similar percentages of bases
classified as EMC and Gene Index, but noticeable differ-
ences in how sequences are divided among repeat classes.
Interestingly, the L600 set (Fig. 3B) shows fewer bases in
repeat and low-copy classes compared with the full-length
query sequences, which have a mean length of 599 bp
(Fig. 3A). The full-length query sequence analysis involved
roughly six times as much sequence data as the L600 anal-
ysis, and indeed, this may account for the observed differ-
ences. Although it is not clear what size query sequence
will produce the most accurate description of a genome
(and it is likely that optimal query sequence size may differ
from genome to genome), our results suggest that 500- to
600-bp fragments provide an adequate compromise
between length and classification specificity, while shorter
sequences result in disruption of features that permit
classification.

Centromere rDNA Transposon Annot. Rep. Prob. Rep.

Poss. Rep. EMC Gene Index GSUC Chlorop. Mitochond.

0 10 20 30 40 50 60 70 80 90 100

L100

L200

L400

L500

L600

L300

Percentage of nucleotides

Percentage of nucleotides
0 10 20 30 40 50 60 70 80 90 100

full

short

A

B

Fig. 3. SRCP-based classification of random sorghum genomic shotgun
query sequences. (A) Classification of full-length query sequences
(mean = 599 bp) versus short-length query sequences (mean = 105 bp).
(B) Effect of query sequence length on classification. Six different query
sequence lengths ranging from 100 to 600 bp were tested (see Supplemen-
tary Table 2).
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Analysis of Cot-filtered DNA

Reduced-representation sequencing techniques are
methods that can be used to preferentially isolate and
sequence a desired subset of DNA sequences from a larger
population of sequences [8,9]. For example, some reduced-
representation sequencing techniques are used to isolate
and sequence gene-rich regions found within genomic
DNA. Others may enrich for repeats or molecular markers.
Examples of reduced-representation sequencing techniques
include EST sequencing, methylation filtration [14], and
Cot filtration [10].

If one is interested in evaluating reduced-representation
sequencing-based enrichment using the SRCP, it is best if
the SRCP is first used to analyze random genomic DNA
from the same organism. This allows establishment of a
‘‘background’’ genome composition and results in genera-
tion of a Probable Repeat local database, which can be
used to help identify repeats in the reduced-representation
sequencing data.

To test the quality of SRCP classification versus manual
classification, we first ran sorghum genomic query
sequences through the pipeline to generate a Probable
Repeat local database for sorghum. Then we used the
SRCP to evaluate a set of Cot-filtered highly repetitive,
moderately repetitive, and single-/low-copy sequences
manually classified and described by Peterson and col-
leagues [10]. Peterson and colleagues made no attempt
was to identify repeats and/or genes in the categories com-
parable to our ‘‘No Hit’’ group, preventing direct compar-
isons of repeat and low-copy contents. Consequently, we
analyzed the ‘‘No Hit’’ sequences of Peterson et al. [10]
with the algorithms depicted in steps J–L in Fig. 2 and
made the assumption that 50% of bases given a final clas-
sification of Genome Sequence of Unknown Character
were low-copy DNA. As with the random genomic

DNA, the Cot-filtered sequences were analyzed as ‘‘full-
length’’ query sequences (mean ± SE length = 177.5
± 2.8 bp) and ‘‘short-length’’ query sequences (80–
179 bp). The results of the full-length SRCP, short-length
SRCP, and manual classification are summarized in
Fig. 4. Of note, there is very little difference in the percent-
ages of single-/low-copy and repetitive sequences detected
using the three schemes.

Conclusions

The SRCP is an automated means through which gen-
omes can be characterized based on sample shotgun
sequencing. To our knowledge, it is the first pipeline
designed for this purpose. Moreover, as demonstrated
above, it can be used to determine the efficiency of
reduced-representation sequencing in a manner that is as
accurate as, and certainly much faster than, manual classi-
fication. Of note, careful adaptation of the SRCP may
advance comparative genomics by affording a rapid means
of evaluating divergence that has occurred in ostensibly
related species. Although we developed our implementa-
tion for the study of higher plant genomes, the SRCP
can be easily adapted for study of any group of organisms;
the principal adjustment required for use of the SRCP for
other subjects is modification of the boolean text strings
used in building the local databases (Supplementary Table
1). Alternatively, one can use existing sequence databases,
including those developed for model organisms. The imple-
mentation of the SRCP described in this article is based on
the scale and demands of our current workloads. However,
the design is such that it can readily be adapted for larger-
scale projects. In such cases, sequence alignment might best
be performed on a cluster running a parallelized version of
BLAST (at least for alignments performed against the
Gene Index and EMC local databases). Techniques such
as Extensible Stylesheet Language Transformations
(XSLT) may further speed up processing of large XML
output files. Once the pipeline is established and performs
all steps correctly, it can be further automated via script
scheduling and bottleneck elimination in program flow.
Additionally, the SRCP is designed to be easily coupled
with other scripts that allow further utilization of the
sequence data. Indeed, we have begun building a pipeline
that will generate consensus sequences for transposons
and classify these elements into families based on their
sequence structures.
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Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.ab.2007.
08.008.
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Abstract

Background: Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality
research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based
on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish
between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid
and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe
the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing
between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus6giganteus). We provide the
first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations.

Results: A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three
Miscanthus6giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic
tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant
miscanthus plants exhibit considerable sequence divergence.

Conclusions: Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to
differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally
annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we
demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation.
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Introduction

Nucleic acid-based identification techniques are used to

improve agronomic species through molecular breeding and/or

transgenesis. Moreover, the ability to genetically identify and

distinguish between related species, cultivars/strains, and individ-

uals is central to technology commercialization and the protection

of intellectual property [1–3]. While a number of restriction site

polymorphism-, random amplicon-, and repeat polymorphism-

based molecular marker techniques have been developed to

compare individuals and construct linkage maps [4], Illumina

sequencing makes it affordable to conduct robust assays at the

much higher resolution of single nucleotide polymorphisms (SNPs)

[5,6]. SNP assays relying on whole genome sequence comparisons

are not currently affordable for practical use in commercial

settings and for agricultural patents. Moreover, the very large

numbers of SNPs in the non-coding regions of genomes, which

tend to be under relatively low evolutionary constraint, provide

much larger datasets than needed for most mapping and

identification/differentiation projects. Exome screening based on

high-throughput sequencing, however, is a potential method for

comparison of evolutionarily constrained sequences.

Giant miscanthus (Miscanthus 6 giganteus), a fast-growing

perennial grass that originated in Japan [7], is a hybrid between

the diploid Miscanthus sinensis (2n=2x=38) and the tetraploid M.

saccharifloris (2n=4x=76). Its seed sterility (propagation is tradi-

tionally via rhizome cuttings), non-invasive nature, efficient C4

metabolism (particularly at cold temperatures), deciduosity, low

nutritional requirements, high photosynthetic output, and ability

to grow on marginal lands have made it among the most

promising dedicated lignocellulosic bioenergy feedstocks [8],

especially in areas such as the U.S. and Europe where it has no
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close wild relatives [9]. Despite the potential of giant miscanthus as

a bioenergy crop, very little is known about the molecular

mechanisms underlying its basic biology.

Although, giant miscanthus is closely related to sugarcane and

sorghum [10], the lack of dedicated functional genomics resources

for these three species is a bottleneck for understanding molecular

processes underlying the bioenergy qualities of these crops. This

lack of molecular genetic data not only hinders strategies aimed at

improving giant miscanthus, but it also makes it difficult for plant

breeders to prove whether new varieties that they have discovered

or developed are genetically different from existing varieties.

Recently, Swaminathan et al. [11] conducted genome survey

sequencing and small RNA sequencing in giant miscanthus. Their

research revealed that repetitive sequences dominate the giant

miscanthus genome. Moreover, the coding regions of the giant

miscanthus genome are similar to coding regions in other grasses.

Additionally, most small RNAs appear to be the products of

transcribed repeats.

Here we describe the use of high-throughput exome sequencing

as a means of distinguishing Miscanthus 6 giganteus cultivars and

Miscanthus species. The approach is applicable to technology

commercialization, plant improvement, molecular genetic map-

ping, and phylogenetics. We constructed a first draft of the

Miscanthus exome from transcript contigs built from cDNA reads of

all seven plants utilized in this study. These transcripts were

functionally annotated using the Gene Ontology (GO), and the

data is publicly available via AgBase [12] (http://www.agbase.

msstate.edu).

Results and Discussion

Plant Materials
Seven different plants were utilized in this study. Three of the

plants were believed to represent the Miscanthus6 giganteus cultivar
‘Freedom’. We designated the ‘Freedom’ plant first provided to us

as FO for ‘Freedom’, original; the other two ‘Freedom’ plants were

obtained from a field and a nursery, and thus designated FF and

FN, respectively. Two plants representing theMiscanthus6giganteus
cultivars ‘Illinois’ (I) and ‘Canada’ (C) were also included in the

study as was a plant labeled Miscanthus floridulus (F). Based upon its

physical appearance and growth, the F plant was suspected of

actually being Miscanthus6giganteus. Of note, misidentification and

mislabeling of Miscanthus species is common [7]. In addition a

diploid Miscanthus sinensis plant (MS) was used as an outgroup.

Figure 1. Outline of procedure used to identify SNPs from miscanthus samples.
doi:10.1371/journal.pone.0029850.g001
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Transcriptome Sequencing
A rhizome was obtained from each of the seven plants described

above; rhizomes were utilized because our research was conducted

during the winter, and leaf tissue was not available from all

genotypes. mRNA was extracted from each rhizome, reverse-

transcribed to produce cDNA, and the cDNA was sequenced

using an Illumina Genome Analyzer. We chose to sequence

cDNAs because coding sequences are evolutionarily constrained

by the function of the proteins they encode [13]. Thus SNPs in

coding sequences are likely informative of functional genetic

divergence. We generated 8.9 million Illumina reads from cDNA

populations obtained from rhizomes of the seven different

Miscanthus plants described above.

Phylogenetic Analysis
To describe phylogenetic divergence among all seven samples,

we used the method shown in Figure 1. We pooled the sequence

reads from all samples and assembled the reads into contigs. For

this analysis we needed to identify cDNA regions represented in all

samples; therefore, we only considered the reads from the contigs

where reads from all seven samples were present (14.64% of all

reads).

The reads were then compiled into their sample-specific read

sets, which ranged from 33,095 to 370,352 reads. The reads within

each read set were assembled into contigs. Common regions in the

consensus sequences of these sample-specific contigs were used as

references for alignment of reads from each of the other read sets.

The sums of lengths of the reference sequences in these read sets

ranged from 1,315 to 416,163 bp. The resulting alignments for

every pair of samples, e.g., alignment of the FF reads to the FO

reference and alignment of the FO reads to the FF reference,

allowed us to identify two sets of SNPs for each pair of samples

(Table 1). In this case, a SNP is a single nucleotide variation

between a reference sequence of one sample and consensus of

homologous reads of another sample aligned to this reference

sequence. To construct a distance matrix we used weighted SNP/

bp values. As mentioned above, the number of reads in different

sample-specific read sets varied significantly. Thus, SNPs identified

by aligning reads from samples with a low number of reads were

underrepresented (a smaller subset of them was identified).

Therefore, we utilized counts of SNPs per aligned base, which

included bases of every aligned read, rather than SNPs per

reference base with alignment. This allowed us to add additional

weight to SNPs identified by samples with a low number of reads.

For each pair of alignments (e.g., FO vs. FF and FF vs. FO) we

calculated the mean number of SNPs/bp (SNPs per aligned base)

to construct the distance matrix (Table 2). Each of these mean

values represents a normalized measure of genetic variation

between the compared samples. A neighbor joining tree inferred

from the data is presented in Figure 2. To determine nodal

support we performed a bootstrap test as described in the Methods

section. The resulting support values, calculated using a Majority

Rules approach, are provided in the figure.

Our analysis was based on more than 400 million bases of

cDNA sequence data from the seven plants. From this data set, we

focused on cDNA regions with high quality representation in all

seven samples (4.7 million bases total) for SNP analysis.

Importantly, the phylogenetic tree constructed from the data

exactly represents the known breeding history of the giant

miscanthus plants. Of note, a previous AFLP-based approach

was unable to demonstrate that sequence differences exist among

giant miscanthus cultivars [7] that we differentiated here. Based

upon our data, we concluded the following about the seven

Miscanthus samples:

Table 1. SNPs per aligned bp identified in comparative analysis of cDNA regions common to all samples.

FF FO FN I C F MS

FF - 0.000413390 0.000388363 0.000470852 0.000349889 0.000546697 0.000533935

FO 0.000314511 - 0.000348281 0.000434378 0.000309330 0.000486504 0.000502400

FN 0.000319526 0.000370514 - 0.000472350 0.000359891 0.000531350 0.000557107

I 0.000287344 0.000333024 0.000314453 - 0.000306604 0.000462724 0.000500130

C 0.000356861 0.000409450 0.000387226 0.000479916 - 0.000491909 0.000558566

F 0.000102675 0.000137919 0.000125332 0.000182317 0.000112822 - 0.000236819

MS 0.000187104 0.000244045 0.000230092 0.000334766 0.000212052 0.00060301 -

doi:10.1371/journal.pone.0029850.t001

Table 2. Distance matrix.

FF FO FN I C F MMS

FF -

FO 0.00036395 -

FN 0.00035394 0.00035940 -

I 0.00037910 0.00038370 0.00039340 -

C 0.00035337 0.00035939 0.00037356 0.00039326 -

F 0.00032469 0.00031221 0.00032834 0.00032252 0.00030237 -

MS 0.00036052 0.00037322 0.00039360 0.00041745 0.00038531 0.00041991 -

doi:10.1371/journal.pone.0029850.t002
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1. The ‘Freedom’ plants FO, FF, and FN are more similar to each

other than they are to ‘Illinois’. On average ‘Illinois’ is 70% less

similar to FO, FF and FN than FO, FF and FN are to each

other.

2. The mRNA sequence data from FO, FF, and FN are not

sequence identical. This could reflect differences in allele/

homolog/paralog expression between the ostensibly genetically

identical plants. However, the level of variation is very low,

compared with the inter-cultivar or interspecies Miscanthus
comparisons.

3. ‘Canada’ is related to ‘Illinois’ and the three ‘Freedom’

varieties, but it is more similar to the three ‘Freedom’ varieties

than it is to ‘Illinois’. ‘Canada’ is most similar to FO followed

by FN and then FF.

4. F (the plant labeled M. floridulus) is related to all other plants in

the analysis, but it groups more closely with the giant

miscanthus cultivars (‘Canada’, ‘Freedom’, and ‘Illinois’) than

it does with MS. Its similarity to giant miscanthus indicates that

F is most likely a mislabeled Miscanthus 6 giganteus plant.

Our findings strongly suggest that multiple genotypes of giant

miscanthus are available. Genetic differences might account for

observed differences in optimal growth region, disease resistance/

susceptibility, and yield observed between giant miscanthus

cultivars. Planting a single genotype over a large geographic area

increases susceptibility of the crop to catastrophic loss [14,15]. Our

study indicates that the three giant miscanthus cultivars studied

(Freedom, Illinois, and Canada) are genetically different and that this

diversity can be exploited in future cultivar development.

Exome Assembly
We also produced two miscanthus exome assemblies by

separately assembling Miscanthus sinensis reads and combined reads

from all varieties of Miscanthus6giganteus using Velvet [16]. Velvet
contains a module called Columbus that can be used for assisted

transcriptome assembly using transcript sequences of a nearby

species. Sorghum bicolor, a species with a complete genome sequence

and extensive transcript sequence resources [17], is closely related

to Miscanthus [7], and thus we utilized Sorghum bicolor in assisted

transcriptome assembly of the M. sinensis and M. 6 giganteus.
Assisted assemblies afforded a significant improvement over non-

assisted assemblies as shown in Figure 3. The four graphs

represent the effects of varying k-mer size on various characteristics

of assemblies. For genomic sequence data, the optimal assembly in

Velvet is achieved by varying the k-mer size to find the maximum

N50 and the smallest number of long contigs, while using the

expected coverage threshold to minimize misassemblies. This

approach is not applicable for transcript assemblies where the

number of contigs should ideally be equal to the number of

transcripts. For transcript assemblies ideal contig lengths should

correspond to actual cDNA lengths and, due to differential gene

expression, expected coverage cannot be used. For transcript

assemblies, it is more applicable to maximize the contig lengths of

longer contigs in the assembly by varying the k-mer size. The

shorter contig lengths resulting from shorter than optimal k-mer

length correspond to presence of misassembled transcript

fragments. The shorter contig lengths resulting from longer than

optimal k-mer length correspond to under-assembled contigs due

to wasted coverage (unused reads with insufficient overlaps).

Velvet outputs only the length of the longest contig (Figure 3, B).

However, as shown in this graph, the longest contig in the assisted

assemblies of Miscanthus 6 giganteus was not affected by varying k.

Therefore, we calculated the average length of top 100 longest

contigs for every assembly (Figure 3, D). We selected the optimal

assemblies by finding a peak in this metric – k=37 for the

Miscanthus6giganteus assembly and k=23 for the Miscanthus sinensis

assembly. To validate this method for selection of optimal

transcript assemblies, we assembled Arabidopsis thaliana transcripts

using Illumina RNA-seq reads from NCBI Short Read Archive

(ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/

litesra/SRR/SRR018/SRR018346/SRR018346.lite.sra). The

reads were assembled using exactly the same assisted assembly

pipeline that was applied for the Miscanthus transcript assemblies.

To estimate quality of each assembly generated by varying the k-

mer size, we aligned the resulting transcripts to the standard

Arabidopsis thaliana transcript assemblies downloaded from (ftp://

occams.dfci.harvard.edu/pub/bio/tgi/data/Arabidopsis_thali-

ana/) and calculated the number of bases in the regions where

our transcript contig sequences aligned without overlapping

each other to the standard transcript sequences with 100%

identity. The results are shown in Table 3. As we expected, the

maximum of the quality metric described above occurred at the

Figure 2. Phylogenetic tree inferred by SNP analysis in common regions of all seven samples. Phylogeny is inferred using weighted
SNPs/bp to prepare a distance matrix and generate the neighbor-joining tree for the miscanthus samples.
doi:10.1371/journal.pone.0029850.g002
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same k-mer size (k= 19) as the maximum of the average length

of the top 100 longest contigs.

The Miscanthus transcript contigs identified using Velvet were

processed with the de novo transcriptome assembler Oases (http://

www.ebi.ac.uk/,zerbino/oases/). This analysis identified 29,795

Miscanthus 6 giganteus transcripts and 14,066 Miscanthus sinensis

transcripts and generated splicing annotation for these transcripts.

Functional Annotation and Analysis
We did functional annotation of the Miscanthus mRNAs using

GO. Since these sequences are novel, there is no direct

experimental evidence for their function and GO annotation

must rely on sequence analysis. The most common type of GO

annotation derived from sequence analysis is annotations based on

functional motif and domain analysis using InterProScan [18].

Although widely used, InterProScan requires considerable com-

putational power and thus is typically run on clusters. However, a

recent trend in bioinformatics is the use of cloud computing for

analysis, [19,20] so we tested the use of the publicly available

Amazon EC2 cloud to do functional annotation. This approach

provided 58,392 GO annotations for 14,098 miscanthus tran-

scripts, 24,874 transcripts were provisionally GO annotated as

‘‘ND’’, (i.e., ‘‘No Data’’), and the remaining 4,881 transcripts

could not be annotated using this procedure (e.g. sequence too

short to provide reliable results). When transcripts are grouped

into gene models, 32% of Miscanthus gene models were annotated

with non-‘‘ND’’ GO terms, indicating a predicted function, and

89% of Miscanthus gene models were annotated counting GO

terms with the ‘‘ND’’ evidence – these will have to await

experimental characterization of function. In comparison, 58% of

sorghum genes have GO annotation (based on the current GO

Consortium release). Since sorghum gene products are mostly

annotated using the same method as we used for Miscanthus, we
can conclude that our transcript assemblies afforded functional

annotation of a comparable percentage of gene products to that of

another mostly computationally annotated plant species. Using

InterProScan on the Amazon EC2 cloud resulted in the average

speed of 3 h 9 min per 1,000 nucleotide sequences (with the

average sequence length of 570 bp) at a cost of $21.39 per 1,000

nucleotide sequences. However, mappings from InterPro func-

tional domains to GO are revised on a monthly basis and

corresponding GO annotations also need to be updated and this

will add to the cost of GO annotation.

We are also providing manually derived GO annotation by

transferring annotations from closely related sequences (based on

sequence alignments) that have experimentally derived GO

annotations [12]. This approach identified 57 GO annotations

for eight transcripts. Manual biocuration of plant species within

the GO Consortium has focused on the model plant Arabidopsis
thaliana [21] and, more recently on cereals such as rice and maize

[22]. Notably, although Sorghum bicolor is closely related to

miscanthus, there is currently no experimentally derived GO

annotation available for sorghum gene products, so this species

was not considered during our manual GO annotation process.

This example emphasizes the importance of funded efforts to

provide experimentally derived functional annotation for a diverse

range of key genes from economically important species.

We compared our functional annotations to those from the

closely related Sorghum bicolor. The proportion of Miscanthus gene

products with GO annotation is generally similar to that of Sorghum
bicolor (Figure 4), indicating that our transcripts are representative

of a comprehensive miscanthus model transcriptome. Interesting-

ly, the proportion of miscanthus transcripts annotated to nucleus,

plastid and ribosome was twice that of sorghum, while the

proportion of miscanthus transcripts annotated to protein

modification and transcription was half of that found in sorghum.

While caution should be used in interpreting functional annota-

tions from two different and incompletely annotated species, our

result is not unexpected in the context of rhizome tissue used in

this study. Since rhizomes grow underground, it is expected that

chloroplasts would be underrepresented. Moreover, while rhi-

zomes can be very active tissues, the samples used were taken from

prolonged cold storage, which may have inhibited transcription

and translation (protein modification) in general.

Overall, the total number of GO annotations for M. sinensis and

M. 6 giganteus is proportional to the number of identified

transcripts for these two organisms. Similarly, the larger number

Figure 3. Impact of k-mer size on characteristics ofMiscanthus6
giganteus exome assembly in Velvet. Assisted assemblies were
assisted with Sorghum bicolor transcript references. (A) N50 vs. k-mer size.
(B) Longest contig length vs. k-mer size. (C) Sum of contig lengths, Mb vs.
k-mer size. (D) Average length of the top 100 longest contigs vs. k-mer size.
doi:10.1371/journal.pone.0029850.g003
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of sorghum annotations reflects the larger number of known

sorghum gene products with GO annotation.

Data
The transcript assemblies, splice annotations, and functional

annotations of Miscanthus 6 giganteus and Miscanthus sinensis are

located at http://www.agbase.msstate.edu/cgi-bin/information/

Miscanthus.pl. The Illumina reads used in this project can be

downloaded from NCBI Short Read Archive using the accession

SRA025019.

Methods

Transcriptome Sequencing
Rhizomes were obtained from plants growing in greenhouses or

agricultural fields. Individual dormant rhizomes were collected from

each of the seven Miscanthus clones. Rhizomes were incubated at

room temperature on moist paper on a lab bench for 3 days. Small

(100 mg) pieces were taken from each rhizome and ground in liquid

nitrogen. These pulverized samples were then re-suspended in 1 ml

Trizol reagent (Invitrogen) and transferred to ND Pulse tubes

(Pressure Biosciences). Samples were processed in a Barocycler

(Pressure Biosciences) for 20 cycles of 20 seconds at 35 kpsi followed

by 5 seconds at atmospheric pressure. The resulting lysates were

passed through QIAshredder columns (Qiagen) according to the

manufacturer’s protocol. Lysates were phase-separated using the

Trizol protocol (Invitrogen). Following addition of isopropanol,

RNA was collected on an RNeasy column (Qiagen). Samples were

treated with on-column DNase I and washed as per the RNeasy

protocol (Qiagen). Each sample was eluted in 30 ml of RNase-free

water. Sample quantity and quality were evaluated spectrophoto-

metrically using a Nanodrop (Thermo) and by capillary electro-

phoresis using a Bioanalyzer (Agilent).

Library Construction
Starting with 10 mg total RNA, library construction was done

using the Illumina mRNA-seq sample prep kit. Total mRNA was

sampled using polyA beads, chemically fragmented and randomly

primed for reverse transcription and second-strand synthesis. The

resulting cDNA was end-repaired and an adenosine residue was

added to produce single-A overhangs. Illumina paired-end

sequence adaptors were ligated to the cDNA fragments. Fragments

with lengths of approximately 200 bp were sampled from a 2% w/v

agarose gel and amplified by PCR (18 cycles) according to the

Illumina protocol. A capillary electrophoresis-based Agilent Bioa-

nalyzer was used to quantify and confirm the fragment size

distribution of each library. One microliter of each 10 nM mRNA-

seq library sample was diluted 10 fold and denatured. For each

denatured library, 6 ml of the 1 nM content was diluted in

hybridization buffer to 6 pM for clustering (Illumina Standard

Cluster Generation Kit v2) according to the manufacturer’s

protocol. Single read sequencing (40 bp) of the clustered flow cell

was done using Illumina’s SBS chemistry (Illumina Sequencing Kits

v3) and SCS data analysis pipeline v2.4. Flow-cell image analysis

and cluster intensity calculations were carried out by Illumina Real

Time Analysis (RTA v1.4.15.0) software. Subsequent base-calling

was performed using the Illumina GA Pipeline v1.5.1 software.

Phylogenetic Analysis
To analyze phylogenetic relatedness, we identified SNPs that occur

in the regions common to all seven samples. To identify the common

regions, Illumina reads from all seven samples were combined and

assembled with Velvet. Because SNP identification requires high

quality assembly, these Illumina reads were pre-processed prior to

assembly. Specifically, we noticed 61% of reads had a single N in the

last position; these Ns were removed. Any remaining reads containing

Ns were removed. We also set the -max_gap_count parameter (the

maximum number of gap bases allowed for simplification of two

aligned sequences, default: 3) in Velvet to 1, to further improve the

assembly quality. Contigs containing at least one read from all seven

samples were broken down into sample-specific read sets. Each read

set was assembled into a group of sample-specific contigs whose

consensus sequences were saved in a reference FASTA file. Each

group of sample-specific reads was aligned against each of the other

six groups of sample-specific reference sequences using MAQ [23].

All samples except forMiscanthus sinensiswere from triploid organisms.

To account for this we used the -N 3 option with the maq assemble

command when aligning reads from such organisms. SNPs were

identified using MAQ’s cns2snp and SNPfilter utilities with default

parameters. SNP counts were used to calculate the mean of weighted

SNPs/bp values for each pair of samples allowing construction of a

distance matrix (Table 2). This distance matrix was then analyzed

Table 3. Transcript assembly metrics evaluation using Arabidopsis thaliana assemblies.

k

Average length of
the top 100
longest contigs

Length of the
longest contig N50

Number of megablast hits with
100% identify to the standard
transcript sequences produced by
the contig sequences

Number of bases in the regions where our
transcript contig sequences aligned without
overlapping each other to the standard
transcript sequences with 100% identity

15 1261 1957 8 661 8571

17 1482 2365 110 73600 1789362

19 2028 4616 223 92409 2189814

21 1886 4182 165 73506 2124487

23 1732 5050 235 47372 2040209

25 1662 5048 300 31027 1821088

27 1590 5046 346 20384 1493454

29 1457 5044 379 13093 1102776

31 1382 5042 416 7656 750977

33 1253 4260 474 3679 427093

35 1005 4250 510 1362 120707

doi:10.1371/journal.pone.0029850.t003
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using MEGA 4 [24] to generate the neighbor-joining tree shown in

Figure 2. Node support was inferred using a bootstrap test adopted

for our method. We created 200 bootstrapped datasets for all 42

alignments that we had, followed by calculation of the mean values of

SNPs per aligned base to create 200 distance matrices. These 200

replicates were submitted to the ‘neighbor’ executable of the PHYLIP

3.67 package. The resulting trees were then submitted to ‘consense’ to

calculate support values.

Exome Assembly and Functional Analysis
We used Bowtie [25] to create alignments (SAM files) to Sorghum

bicolor transcripts. The transcripts were downloaded from the Gene

Index Project (ftp://occams.dfci.harvard.edu/pub/bio/tgi/data/

Sorghum_bicolor/). The reference sequences, SAM files and

unmapped reads were used for cDNA contig assembly in Velvet.

We used default parameters without setting coverage cutoff or

expected coverage. This was done because expected coverage

cannot be assessed for gene expression data. Transcripts were

identified by processing the resulting contigs in Oases using default

parameters.

The identified transcript sequences were functionally annotated

to the GO [26] using standard, GO Consortium compliant

biocuration techniques [27]. Since these sequences were not

associated with any published functional literature they were GO

annotated by manual inspection of BLAST alignments to GO-

Figure 4. Distribution of GO annotation for miscanthus sequences compared to Sorghum bicolor. Sorghum GO annotation was
downloaded from AgBase (October 2010) and the Plant GO Slim used to group and compare GO annotations from miscanthus and Sorghum bicolor, a
closely related species. (A) Biological process GO terms. (B) Cellular component GO terms.
doi:10.1371/journal.pone.0029850.g004
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annotated plant genes using the GOanna tool [12] and functional

motifs and domains were mapped to the GO using InterProScan.

InterproScan IDs were then mapped to GO:IDs and the

information formatted as a standard gene association file. We

compared these results against GO annotation provided for

Sorghum bicolor obtained from AgBase (October 2010), as both

sorghum and Miscanthus have only computationally predicted GO

annotations. For each species, GO annotations were summarized

into major categories using GOSlimViewer (http://agbase.

msstate.edu/cgi-bin/tools/goslimviewer_select.pl) with the Plant

GOSlim set. GO annotations were quality checked to meet GO

Consortium standards and publicly released via the AgBase

database.

Amazon EC2 Cloud Computing
While sequence alignment using MAQ and sequence assembly

using Velvet are routinely done using local servers, the

InterProScan analysis is extremely CPU-intensive and conse-

quently the program is typically run on a computer cluster. We

chose to create an on-demand cluster using 10 high-CPU instances

from the Amazon EC2 cloud (http://aws.amazon.com/ec2).

InterProScan was installed on an attachable Elastic Block Storage

partition. The cluster was started from an instance with the

installed StarCluster software (http://web.mit.edu/stardev/clus-

ter/). StarCluster allows specifying an attachable partition

available to all cluster nodes via Network File System. We used

this feature to make the Elastic Block Storage partition with

InterProScan accessible from all cluster nodes. StarCluster also

comes with the pre-installed SGE (Sun Grid Engine) queuing

system supported by InterProScan. To avoid problems with

InterProScan/SGE hanging when processing large files with

thousands of nucleotide sequences, we split files into smaller files

with up to 1,000 nucleotide sequences, setting the chunk size

parameter in InterProScan to 60 and setting the finished_ jobs

parameter in SGE to 20,000. (Increasing the chunk size and the

finished_ jobs parameter allows processing files with longer sequenc-

es or a greater number of sequences, but this can decrease the

processing speed). For our dataset, this setup resulted in the

average speed of 3 h 9 min per 1,000 nucleotide sequences (with

the average sequence length of 570 bp) at the cost of $21.39 per

1,000 nucleotide sequences.
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CHAPTER IV 

MANUAL BIOCURATION TO SUPPORT STANDARDIZED CHICKEN GENE 

NOMENCLATURE AT CGNC

Abstract

Chicken is the de facto model bird occupying a key evolutionary niche. However, 

comparative biology, both within avian species and within amniotes is hampered due to 

the difficulty of recognizing orthologs and functional equivalents. Standardized gene 

nomenclature is therefore necessary to facilitate communication between scientists. The 

international Chicken Gene Nomenclature Consortium (CGNC) provides standardized 

gene nomenclature for chicken genes. CGNC members initially created a core set of 

human-chicken orthologs with consistent gene nomenclature as the initial chicken gene 

nomenclature set. We now report on the development of an interface that allows 

biocurators and community experts to assign gene nomenclature for chicken and a 

manual biocuration effort to provide nomenclature for chicken genes without a clear 

human:chicken 1:1 ortholog. Our current biocuration focus is: (1) manually verifying 

assigned orthologs; (2) working with domain experts to provide standardized 

nomenclature for the chicken MHC genes; and (3) assigning nomenclature for genes 

expressed in hen eggs (that are likely to be bird-specific). We combine manual 
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biocuration with structural and functional annotation of these genes and gene products. 

We strongly encourage researchers with domain knowledge to participate in this 

nomenclature effort. The CGNC website is linked via BirdBase and AgBase or can be 

accessed directly at http://www.agnc.msstate.edu/.

Introduction

Chicken (Gallus gallus) occupies a unique evolutionary niche in vertebrate 

analyses and is one of the few animals important in both the medicine and agriculture. As 

the first bird species to have its genome sequenced [1], it is also the best annotated bird 

genome and serves as the de facto model organism for all current and future avian 

sequencing and annotation projects. Large scale genome sequencing projects such as the 

Genome 10K Project [2] are already sequencing multiple bird genomes, expanding the 

number of sequenced avian genomes from three to more than 50. Moreover, advances in 

sequencing technologies mean that additional, individual bird genome projects are also 

underway [3,4,5]. As more sequence is obtained from avian species, the need for 

developing reference genome resources for chicken intensifies. While each bird genome 

sequence will inform and improve the others, problems caused by propagating poor gene 

nomenclature will only increase. Lack of standardized gene nomenclature hinders 

researchers from exploiting the full potential of avian comparative and functional 

genomic studies.

Although the standardized chicken gene nomenclature was first proposed in 1995 

[6], it was not until 2009 that the Chicken Gene Nomenclature Committee (CGNC) 

formed to provide an international and coordinated effort to provide standardized 
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nomenclature for chicken genes [7]. This initial work focused on developing clear 

guidelines for assigning chicken gene names and standardizing chicken gene 

nomenclature with human gene nomenclature where a clear 1:1 ortholog exists.

Here we report an online CGNC resource (http://www.agnc.msstate.edu) that 

provides the most up-to-date and curated set of chicken gene nomenclature, along with 

HGNC Comparison of Orthology Predictions (HCOP) [8] verified human orthologs and a 

detailed gene report containing nomenclature and accession links. Each gene report 

includes CGNC data, links to external resources, HCOP ortholog data, and maps of 

neighboring genes for the chicken gene and its human ortholog(s). This database also has 

a registered user login (available upon request) so that biocurators and community 

experts can add gene nomenclature information. The website includes guidelines for 

assigning chicken gene nomenclature, information about ongoing manual biocuration 

projects, the ability to download gene nomenclature information and a contact address for

CGNC biocurators. Interested researchers can help assign nomenclature by registering as 

CGNC biocurators. The annotation provided by the external experts will be checked for 

consistency with current guidelines by CGNC biocurators and added to the current

CGNC dataset. We also discuss our ongoing projects for manual biocuration of chicken 

MHC and egg genes and how these projects are informing the development of 

nomenclature guidelines.
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CGNC Database

Implementation and Updates

At the core of the database underlying the CGNC web interface is the dataset of 

chicken gene nomenclature based on transferring human gene nomenclature to chicken 

genes in instances where a 1:1 ortholog could be identified [7]; the genes named in this 

way are classified as “automatic” in the CGNC download statistics and work is ongoing 

to manually verify these names and collect possible synonyms. The CGNC database 

brings in NCBI Entrez Gene information (QTL data in Entrez Gene is disregarded). The 

initial gene nomenclature data stored in the CGNC database comes from NCBI 

Gallus_gallus.gene_info (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Non-

mammalian_vertebrates/) and Ensembl Biomart 

(http://www.ensembl.org/info/data/biomart.html). The data collected from these sources 

includes the following fields: CGNC ID, Entrez gene ID, Entrez gene version, Ensembl 

ID, Ensembl version, gene symbol, gene name, gene synonym, HGNC symbol, human 

ortholog, HGNC ortholog, curation status, biotype ID, and various tracking fields. Every 

two months this dataset is automatically updated using a Perl script. This script performs 

the following steps: 

1. It downloads the current Gallus_gallus.gene_info file and adds new non-QTL 

gene records to our dataset. The gene records selected for insertion have Entrez 

Gene IDs and gene symbols that are not present in our dataset. 

2. Gene names, gene symbols, and gene synonyms in the CGNC gene records 

without manual annotation are updated using the matching records from NCBI 
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Gallus_gallus.gene_info if such NCBI records have no CGNC cross-reference 

(CGNC is not present in the dbXrefs field). This step propagates any non-CGNC 

initiated nomenclature updates to the CGNC dataset.

3. Automatic CGNC records with obsolete Entrez gene IDs or obsolete Ensembl 

gene IDs are removed. An error code is added to the manually curated CGNC 

records with obsolete Entrez gene IDs or obsolete Ensembl gene IDs. Such 

records will be manually reviewed by our biocurators and most likely deleted, 

while providing a chance to transfer manual annotation to other records.  

4. The current human:chicken ortholog data is obtained from the HCOP [8] as 

described in the next section. The HGNC nomenclature is transferred to the 

automatic CGNC records with 1:1 human:chicken orthologs and if the old gene 

symbol is locus-based (LOC*) then it is moved to gene synonyms. Non-locus-

based symbols and names in the automatic CGNC records with 1:1 orthology are 

overwritten during the nomenclature transfer, because they are not asserted by 

CGNC and should not be considered established names and symbols as opposed 

to our manual records. Error flags are added for manual CGNC genes if their 

human orthology is no longer 1:1 or if now there is a 1:1 human:chicken ortholog 

with a different gene name or symbol. Error flags are also added to the gene 

records whose gene symbol became duplicate due to this nomenclature transfer 

process.

5. Using publically available and locally maintained mappings of Entrez-Ensembl 

IDs (where local mapping overrides public mapping), Ensembl gene IDs in 

CGNC records are updated based on the corresponding Entrez gene IDs. 
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6. An error flag is added to the records missing a symbol and/or name.

7. Error flags are added to records with duplicate symbols or gene IDs. 

8. Error flags are added to records in which one NCBI gene maps to more than one 

Ensembl genes and vice versa. These records will be manually separated by 

biocurators via adding a NOT-mapping to the locally maintained Entrez-Ensembl 

ID mapping table.

9. Error flags are added to records with gene symbols starting with LOC* or KIAA* 

to prioritize them for review by biocurators. 

HCOP Orthology Resources

Human:chicken ortholog data is obtained from the HCOP [8]. It is acquired using 

http://www.genenames.org/cgi-bin/hcop.pl. We retain the following fields from the 

downloaded dataset: chicken database:ID pairs (e.g., Ensembl=ENSGALG00000004248, 

Evola(H-InvDB)=HIT000251740, Homologene=55548, 

Inparanoid=ENSGALP00000006747, OMA=67847, OPTIC=110514, 

OrthoDB=EOG4H46M4, Treefam=ENSGALG00000004248), chicken chromosome, 

chicken Entrez Gene ID, Genbank accession, chicken gene name, chicken Genbank or 

UniProt protein accession, chicken Genbank RNA/mRNA accession, chicken gene 

symbol, HGNC ID, human assertion IDs, human chromosome, human Entrez Gene ID, 

human Genbank accession, HGNC assigned gene name, human Genbank and UniProt 

protein accession, human Genbank RNA/mRNA accession, HGNC assigned gene 

symbol, CGNC ID, and a list of databases that provided support for orthology prediction. 

The data fields displayed in the HCOP table of the web interface (Figure 4.1) are: chicken 
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Entrez Gene ID, chicken gene name, chicken gene symbol, CGNC ID, human Entrez 

Gene ID, human gene name, human gene symbol, HGNC ID, a list of databases that 

provided support for orthology prediction, and orthology type (1:1, 1:n, n:1, or n:n).

Since the chicken nomenclature data in the HCOP table are taken directly from the 

HCOP dataset they may vary from the associated recently modified CGNC nomenclature 

displayed in the main CGNC table. In this case, the HCOP chicken nomenclature only 

represents a historic record that will be updated as our updates propagate to HCOP and 

the HCOP dataset is reloaded during the next CGNC update. The downloaded HCOP 

dataset provides a single record for each orthology relationship without identifying the 

orthology type (1:1, 1:n, n:1, or n:n). This identification is performed in our database via 

a series of queries counting the number of orthologs in human for every chicken gene and 

the number of orthologs in chicken for every human gene. The identified ortholog types 

are stored in the database and displayed in the HCOP table of the web interface. By 

displaying human:chicken orthology data in the CGNC web interface we enable 

biocurators to quickly identify any human orthologs for a particular chicken gene and 

assign nomenclature accordingly. The HCOP data are updated every two months by 

reloading the entire table and recalculating the ortholog types.

BirdBase Resources

Every CGNC ID is mapped to the corresponding BirdBase ID 

(http://birdbase.arizona.edu/birdbase/) and GEISHA (Gallus Expression In Situ 

Hybridization Analysis) IDs (http://geisha.arizona.edu/geisha/). The IDs are used to link 



www.manaraa.com

40

to these resources and mapping tables for these links are updated every two months to 

reflect any changes.

CGNC Website

Searching the Web Interface

The front page of the CGNC web site (http://www.agnc.msstate.edu/) features 

two forms for searching CGNC and HCOP datasets. Users may do simple text searches 

by gene name, gene symbol or by gene name OR synonym (gene name/synonym). They 

may also search by specifying a public database accession from BirdBase, Entrez Gene, 

CGNC, or Ensembl. The third type of search is the “Human Chicken Ortholog 

Predictions Search”, which searches the HCOP dataset for chicken genes and returns 

information about chicken:human orthology. The HCOP Search can be performed for 

chicken Entrez Gene ID, chicken gene name, chicken gene symbol, CGNC ID, or the 

type of orthologous relationship. Search results are displayed in tabulated form with 

hyperlinks to additional information (Figure 4.1).  The last column in the CGNC table 

contains an HCOP human ortholog link for every gene. When one of the links is selected, 

all human orthologs are displayed in the HCOP table below. Conversely, selecting an 

ortholog link in the last column of the HCOP table will display all chicken orthologs in 

the CGNC table for the corresponding human gene. 
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CGNC Gene Pages

Searching the CGNC returns results that link to individual gene pages (Figure 

4.2). For each gene page, the data are presented grouped as CGNC Data, External Data, 

Human Orthologs and Avian Orthologs. The CGNC Data group includes: CGNC ID, 

Last review date, Status (Automatic, Pending. Approved, Entry Withdrawn, or In 

Review), Species, Gene name, Gene symbol, Synonyms, Chromosome, and Biotype. All 

these data are stored in the CGNC database. The External Data group contains external 

IDs formatted as links to the corresponding online resources. The following links are 

included: NCBI Entrez Gene ID, BirdBase ID, Ensembl gene ID, Chickspress genome 

browser (http://geneatlas.arl.arizona.edu/), GEISHA ID, and AgBase GO. The Human 

Orthologs group contains the following HCOP data for the human orthologs: HGNC ID, 

Entrez Gene ID, Gene name, Gene symbol, and Chromosome. This group also contains 

the ortholog type (1:1, 1:n, n:1, or n:n) determined by us as described above. The Avian 

Orthologs group is currently not populated; however, the same types of data as for the 

human orthologs will be included once the resource expands to other avian species. The 

Gene Neighbors group contains links to the NCBI gene pages 

(http://www.ncbi.nlm.nih.gov/gene/) showing the neighboring genes in the Genomic 

Context section, as well as other relevant gene data. The links are provided for the 

selected gene and its human orthologs. When avian orthologs are added, avian gene 

neighbor links will also be included.    
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Submitting Data to CGNC

Researchers may also contribute their expertise to the CGNC project via a login 

system for data entry. New users may request a login by contacting CGNC; using this 

login provides access to the CGNC biocuration database (Figure 4.3). Users can then use 

the same search strategies to identify chicken genes and their orthologs but the returned 

results now include an option to edit the nomenclature (name, symbol, synonyms) for any 

record. A Comments box is used to capture any additional information and the user ID is 

recorded (as it is for all biocurators). Initially, data provided by new users may also be 

marked as “in review” until confirmed by CGNC biocurators who check to ensure the 

names follow CGNC guidelines. All data entered must pass standard quality checks prior 

to release into the public CGNC database.

Downloads

The Downloads page provides a table with the current annotation statistics for 

chicken. Nomenclature is grouped into four categories: Automatic, Pending, In Review 

and Approved. Genes in the Automatic category are assigned their nomenclature based 

on computational methods: genes in the Pending category have been manually curated, 

but the biocuration quality has not yet been checked; In Review indicates that the 

approved gene nomenclature is awaiting further expert review; and genes in the 

Approved category have manually curated and quality-checked nomenclature. The 

download menu allows the user to filter and select results based upon curation categories 

and accession types. The entire unfiltered dataset in the text tab-delimited format can also 

be accessed from http://www.agnc.msstate.edu/DownloadAll.aspx.
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Integrating CGNC Data

The gene page for any CGNC entry can be opened directly by providing a 

properly formatted URL. For example, to open the gene report for a gene with CGNC ID 

= 37583 the following URL should be used: 

http://www.agnc.msstate.edu/GeneReport.aspx?a=37583. Additionally, any gene-specific 

nomenclature data from the underlying database can also be easily formatted, for 

example, as an HTTP output with tab-delimited text to be utilized by remote servers. This 

output can be retrieved using an HTTP GET or POST request or a static URL. To ensure 

that the chicken gene nomenclature data is widely disseminated, we are happy to 

collaborate with groups wishing to use these data. 

Assigning Nomenclature

Automatic Curation: Chicken-Human Orthologs

There are currently (June 2012) 18,658 chicken genes that have been 

automatically assigned gene nomenclature based upon 1:1 orthology to human genes that 

have standardized nomenclature. To confirm these ortholog assertions and capture 

information about gene synonyms (other names that the gene may also be called in the 

literature), we are manually checking these records. Students trained in aspects of 

orthology assertion, synteny and assignment of standardized gene nomenclature check 

these records by reviewing the HGNC, HCOP and NCBI Entrez gene information. Their 

data are checked by a trained CGNC biocurator prior to release. This project provides a 

practical biocuration project for biology undergraduate students to learn key aspects of 
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genomics, comparative biology, database searching and chromosomal structure while 

contributing to developing fundamental resources for the research community.

Manual Biocuration Projects

Our current manual biocuration is divided into two projects. Our first project is to 

provide standardized gene nomenclature for chicken MHC genes while our second 

project focuses on providing nomenclature for genes that are highly expressed in hen 

eggs. Both of these projects are designed to select gene sets that are important to avian 

biology but contain genes that are unlikely to be annotated based on orthology with 

human genes.

The MHC region contains key immune genes involved in disease resistance (or 

susceptiblilty) and autoimmunity [9], making it a region of interest for immune and 

disease studies. The chicken major histocompatability complex (MHC) is found on 

chromosome 16 and this region has been the subject of several studies to fine map these 

genes [10,11,12,13]. To identify chicken MHC genes we searched for genes annotated by 

NCBI to occur in this region. This yielded 155 NCBI Entrez Gene IDs, of which 104 had 

associated gene symbols and or LOC IDs and were associated with the chicken MHC. An 

additional search using the UCSC Gallus browser (http://genome.ucsc.edu/cgi-

bin/hgGateway) supplemented this original list and we also manually included genes 

from previous chicken MHC studies [10,11]. Discontinued gene annotations and 

quantitative trait loci (QTL) were excluded to give us a final list of 74 genes. We are 

now working to provide standardized gene nomenclature for this gene list in conjunction 

with NCBI, as they review structural annotation of these genes.
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As expected, very few genes in this data set have a 1:1 homology ratio with a 

previously described human gene.  Nine genes have strict orthology to named human 

genes their gene names were changed accordingly to reflect this orthology.  Twenty one 

genes were identified to have a 1:2, 1:n, or n:1 homology ratio with previously described 

human genes. Chicken MHC genes that have similarity to a human HLA gene are 

assigned nomenclature that reflects this relationship. The gene name will follow the form:

Major histocompatibility complex class # <chain type> <specific name>, (similar to HLA 

class # <chain type>).

The symbol is retained as the assigned chicken designator. For example,  Entrez Gene: 

693256 BLB2 becomes:

Gene name:  Major histocompatibility complex class II beta chain BLB2, (similar to 

HLA class II, D beta chain)

Gene symbol: BLB2

This nomenclature is based upon its similarity to HLA class II, D beta chain genes (e.g. 

HGNC IDs: 4945, 4937, 4953). The remaining 43 chicken MHC genes have no human 

ortholog. These genes are named systematically based upon their relationship to well-

studied chicken MHC genes such as BG2 and based upon their previously published 

names, while ensuring that gene symbols are unique. 

A gene set of chicken egg genes for manual biocuration was determined by 

combining genes of proteins known to be expressed in egg white [14,15,16], vitelline 

membrane [17] and yolk [18]. This yielded a list of 201 chicken genes.  Of these genes, 

105 have strict orthology to named human genes. Their gene names were changed 

accordingly to reflect this orthology. Forty two genes were identified that had a 1:2, 1:n, 
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or n:1 homology ratio with previously described human genes. The remaining forty seven 

genes have no human ortholog. Several egg genes are members of large gene families, 

particularly the SERPIN, SPINK, mucin, and defensin gene families. For gene family 

members with direct human orthologs gene names were changed accordingly. For gene 

family members without human orthologs we are working with the HGNC to determine 

appropriate names that reflect gene family membership. For genes with very well-

recognized common names, the appropriate gene family name and symbol were assigned 

and the common name appended in parentheses in the name field (e.g. MUC6, mucin 6 

oligomeric mucus/gel-forming (ovomucin, beta subunint)). In cases where chicken 

researchers and nomenclature experts have agreed that the common name should be kept, 

the appropriate gene family names were appended in parentheses in the name field, (e.g.: 

OVAL, ovalbumin (SERPINB14)). The work to complete manual biocuration is ongoing: 

we are currently seeking feedback from community experts about the gene nomenclature 

we have provided for these projects and expect that this data will be revised based upon 

this feedback and as new information is obtained. The genes to which we are currently 

assigning nomenclature are available on CGNC as a separate list (and are listed by 

project) to facilitate community comment. Moreover, as we finish these projects we are 

seeking community input on future projects that would benefit from manual biocuration. 

Researchers interested in providing feedback or suggesting future curation projects can 

contact CGNC biocurators via the website or directly using agabase@hpc.msstate.edu.
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Collaborations

The CGNC currently works with the HGNC to ensure that chicken gene 

nomenclature is consistent where there are clear and strict orthologs and that numbering 

of family members is sequential. We particularly acknowledge Elspeth Bruford from the 

HGNC group for her advice and guidance. We owe special thanks to community experts 

who provide their knowledge and assistance: Marcia M Miller (City of Hope National 

Medical Center) for her assistance with the MHC project and Janet Fulton (Hy-line 

International) for her assistance with the egg gene project. CGNC welcomes enquiries 

from researchers who wish to have gene nomenclature assigned, resources wanting to use 

the nomenclature, community experts who wish to assist with biocuration or suggest 

targets for annotation and educators who are interested in incorporating aspects of gene 

nomenclature in their class work.

Future Directions

In addition to developing additional manual biocuration projects based upon 

community interest and need, we also expect to develop a core set of chicken gene 

nomenclature that can be applied to other avian species. Via BirdBase we expect to be 

able to identify chicken:turkey and chicken:zebra finch orthologs so that we are able to 

transfer nomenclature to these species. Moreover, we expect that gene annotation, 

orthology, and literature from these species will also inform chicken gene nomenclature. 

The CGNC database is designed to encompass chicken:turkey and chicken:zebra finch 

orthologs data, as it becomes available and this work will link with ongoing efforts to 

provide a bird comparative genome browser via BirdBase. We expect that this data can 
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next be expanded to inform the additional bird genomes that are or soon will be 

sequenced. 

However, comparative analysis outside of the Aves will also provide valuable 

information about gene evolution and conservation. We note with interest that the Anole 

genome project also encompasses a standardized gene nomenclature effort [19] and that 

sequencing of three Crocodilian genomes [20] will provide valuable information about 

genes from reptile species more closely related to birds. Comparative genomics amongst 

these species will only be enhanced by co-operation between resources providing their 

gene nomenclature and clearly defined guidelines for this biocuration effort.
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Figures

Figure 4.1 CGNC interface for searching chicken gene nomenclature and the 
corresponding human orthologs. The search forms allow to search either 
CGNC chicken gene nomenclature or HCOP human orthologs. The links in 
the last column of both tables load the corresponding orthologs for the 
selected gene. The link in the first column of the CGNC table loads the 
Gene Report page (Figure 4.2) for the selected gene.
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Figure 4.2 CGNC gene report page. The gene report page consolidates locally 
maintained nomenclature, mappings to external databases, orthology data, 
and NCBI gene neighbor data for the gene and its orthologs. 
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Figure 4.3 Login and Request Login links on the CGNC front page for gene 
nomenclature editing by research community. Interested researchers are 
encouraged to request login to the editing interface to submit their gene 
nomenclature updates. 
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CHAPTER V 

CONCLUSION

Advances in the sequencing technologies are resulting in an increasing amount of 

sequence data. Currently production of sequencing data outpaces our ability for making 

sense of this data. This creates a critical need for developing bioinformatics 

methodologies, tools, and resources that enable researchers to rapidly analyze and gain 

information from this increasing amount of sequence data.  This dissertation focuses on 

development of tools and resources to support genome structure analysis, individual 

variation, and comparative biology.  

Next-generation sequencing projects are producing either random genomic DNA 

sequences or transcript (reverse transcribed complimentary DNA) sequences. The former 

are necessary for genome characterization projects, in which the composition of non-

transcribed regions of a genome is included in the analysis. Although complete genome 

sequencing reveals the entire genome structure, which lends itself for annotation and, 

thus, represents an ideal means by which the genomes of organisms can be compared, it 

is not currently economically feasible for most eukaryotes. This is especially true for the 

numerous organisms that have large, highly repetitive genomes including many important 

plants and animals. Alternatively, sample sequencing of random genomic DNA can be 

used to gain considerable information about genome structure in lieu of a complete 
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sequence [1,2]. However, it is often difficult for researchers to characterize the sequences 

they have obtained, especially if they have generated large sequence data sets for 

organisms for which previous sequencing research has been limited. There are various 

programs for gene characterization [3,4] and also a growing number of programs for 

characterization of repetitive elements [5,6,7]. However, to my knowledge, there is no 

program or pipeline designed to provide an overview of the sequence composition of an 

entire genome based on shotgun sequence reads. Such characterization can be possible 

using a sequence read classification pipeline (SRCP) presented in this dissertation. In this 

pipeline, a battery of existing and novel algorithms are used to place random genomic 

query sequences into descriptive/functional sequence categories. Classified reads 

represent percentages of each descriptive category. Knowledge of these percentages will 

play an important role in further efforts to sequence and annotate the corresponding 

genome. Thus, the SRCP addresses the lack of preliminary genome characterization 

software/methodologies that hindered inference of genome composition in the initial 

analysis on not-yet-studied organisms. The limitation of the approach used in the SRCP is 

that it provides a limited view of genome structure of a researched organism. Future 

development of this pipeline would benefit from inclusion of various comparative 

analyses with related organisms, such as assigning putative gene orthology, annotation of 

InterPro domains [8] within assembled putative protein sequences, analysis of conserved 

synteny between species, identification of ultraconserved elements (UCEs), comparison 

of gene families and pathways, etc. Future advances in sequencing technologies should 

provide long reads (several thousand bases long)

(http://www.pacificbiosciences.com/products/smrt-technology/smrt-sequencing-
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advantage/), which would change the approach from classifying individual reads as a 

whole to assembly and identification of the DNA elements present within the assembled

sequences. It is likely that such assemblies will represent a fairly accurate reference 

genome draft, since very long high-quality reads should easily overcome problems with 

assembly of repeat regions, which would change the focus of the analysis to preliminary 

annotation of the assembled genome.

Another comparative analysis that can be performed in the initial stages of a study 

of an organism without a sequenced genome is inferring phylogeny of closely related 

species. The ability to genetically identify and distinguish between related species, 

cultivars/strains, and individuals is central to technology commercialization and the 

protection of intellectual property [9,10,11]. While a number of restriction site 

polymorphism-, random amplicon-, and repeat polymorphism-based molecular marker 

techniques have been developed to compare individuals and construct linkage maps [12],

next generation sequencing makes it affordable to do genome wide analysis using single 

nucleotide polymorphisms (SNPs) [13,14]. SNP assays relying on whole genome 

sequence comparisons are not currently affordable for practical use in commercial

settings and for agricultural patents. Moreover, the very large numbers of SNPs in the 

non-coding regions of genomes, which tend to be under relatively low evolutionary 

constraint, provide much larger datasets than needed for most mapping and 

identification/differentiation projects. Therefore, exome screening based on next-

generation sequencing can be used for comparison of evolutionarily constrained 

sequences. This represents a challenge for organisms without sequenced genomes as 

there are no references to which RNA-seq reads can be aligned. This dissertation 
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presented methodology to overcome this challenge by using the RNA-seq reads for 

assembly of partial references common to all strains in the analysis, which then can be 

used for SNP-based phylogeny analysis. The significance of this methodology is that it 

enables high-resolution phylogeny inference of very closely related strains of the same 

organism without sequencing individual genomes of each strain. This scenario is 

common for commercial varieties of many agricultural species. In this dissertation, this 

methodology was applied to miscanthus, an emerging bio-energy crop [15]. Besides that, 

the RNA-seq reads sequenced for this study were utilized for creation of transcript 

assemblies of Miscanthus x giganteus and Miscanthus sinensis. The assembled transcript 

sequences can play an important role in further sequencing of exonic regions during the 

whole genome assembly process. A potential problem with relying exclusively on SNPs 

for phylogeny inference is that just a small number of mutations, many of which may be 

non-SNP variations (copy number variations, insertions/deletions, inversions, etc), may 

separate very closely related strains of the same organism. In this case, overlooking the 

contribution of the non-SNP variations can skew the analysis results. For these cases,

sequencing the entire individual genomes and performing complete comparison of all 

variations would provide the most accurate result. Advances in sequencing technologies 

should make this approach feasible in the future. 

Upon sequencing of a genome, the next step in the analysis is providing a reliable 

genome annotation, most typically to identify coding regions. While there are multiple 

approaches for identifying genes in a DNA sequence [16,17,18,19,20], there are

relatively fewer resources for providing gene nomenclature that is the basis of future 

functional and comparative analyses. Standardized gene nomenclature made available to 
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the researchers as a centralized resource prevents confusion in gene naming, e.g., naming 

the same gene two different gene names or using the same name for two unrelated genes.

It also ensures that orthologs have the same name across species to facilitate comparative 

genomics. A standard gene naming convention guarantees that all gene names, symbols, 

and synonyms are designated following the same rules, e.g., using brief and specific 

names that convey the character or function of the gene, using American spelling, 

avoiding tissue specificity or molecular weight designations. Following such a 

standardized naming convention ensures that the researchers will get the most meaningful 

information about the gene from its name, symbol, and synonym. However, even well 

researched standard organisms like chicken suffer from lack of reliable gene 

nomenclature. Problems such as duplicate gene IDs for the same gene name, duplicate 

gene names for the same gene ID, and inconsistent gene synonyms are common when 

multiple research groups name genes without having an access to a standardized gene 

nomenclature resource. Consequently, comparative biology is hampered due to the 

difficulty of recognizing orthologs and functional equivalents [21]. Therefore, 

standardized gene nomenclature is necessary to facilitate communication between 

scientists [22]. The international Chicken Gene Nomenclature Consortium (CGNC) 

provides standardized gene nomenclature for chicken genes [22]. CGNC members 

created ChickGeneNames, an annotation tool displaying human-chicken orthologs, to 

form a core of chicken gene nomenclature. 

This dissertation presents a ‘first pass’ gene nomenclature resource created by 

transferring nomenclature from 1:1 orthologs of a related species and a web-based 

interface to build on this core set of genes through manual biocuration to assign 
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nomenclature. The nomenclature resource utilizes community expertise via a password-

protected web interface allowing interested researchers with domain knowledge to 

suggest gene nomenclature updates to the biocurators of this resource. As an example, we 

populated this resource with chicken gene nomenclature. Due to rapidly increasing 

number of sequencing projects we project that the number of species with sequenced 

genomes and nascent gene annotation efforts will increase proportionally. At this point 

orthology prediction can be used to facilitate gene annotation and comparative biology.

Hence, there is a need for extensible platform to include related orthology species. For 

example, in the future, the chicken resource can include other avian species and capture 

orthology among their genes and human genes, as well as their genes and chicken genes. 

The general database setup, web interface, and automated update scripts can be easily 

adapted for gene nomenclature resources dedicated to many other organisms. Thus, the 

gene nomenclature resource developed in this dissertation addresses the lack of versatile 

software dedicated for gene nomenclature curation and standardization throughout the 

scientific community. This software represents a tool that can be utilized by multiple 

gene nomenclature committees as a standardized way to catalog, curate, and disseminate 

gene nomenclature data. A limitation of the current version of this resource is that it can

only be adapted for organisms with a curated set of human orthologs supported by 

HUGO (Human Genome Organization) Gene Nomenclature Committee (HGNC) 

(http://www.genenames.org). Particularly, 1:1 human-chicken orthologs are utilized to 

transfer human gene nomenclature to chicken genes automatically. Generally, to establish 

a similar resource for a vertebrate not supported by HGNC, one would have to identify 

human orthologs first. To establish a similar resource for a plant organism one would 
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have to identify orthologs between the plant of interest and Arabidopsis thaliana, which 

is the de facto plant model organism in plant molecular biology [23] with an established 

reference genome that has been intensively studied and annotated. The results, including 

gene nomenclature, can be found in The Arabidopsis Information Resource (TAIR) [24].

Regardless of the availability of orthologs from organisms with standardized gene 

nomenclature this resource would establish a centralized source of gene nomenclature for 

any organism and enable communication among the researchers. As the orthologs 

become available and manual biocuration efforts progress the quality of the gene 

nomenclature will improve.   

In conclusion, the research presented in this dissertation has produced new 

computational algorithms, methodologies, tools, and pipelines that help address the need 

for processing of volumes of data generated by new sequencing technologies. Sequence 

data for thousands previously unstudied organisms will become available in the near 

future, e.g., the Genome 10K project [25]. Utilizing the SRCP (enhanced with 

comparative biology features) and the methodology for initial phylogenetic analysis 

developed in this dissertation, researchers will be able to position the organism that they 

study in the evolutionary context. Knowledge of the genome composition will support 

hypotheses of evolutionary events, such as genome duplication, that led to genetic

variation from the related organisms [26]. Addition of various comparative biology 

analyses mentioned above to the SRCP will facilitate identifying the profile of genetic 

variation, which will help inferring more information about these evolutionary events.

This comparative biology approach will also facilitate identification of orthologs between 

the species and paralogs within the species and, thus, enable functional annotation by 
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transferring gene nomenclature from well-annotated 1:1 orthologs, as required by the 

online standardized gene nomenclature resource developed in this dissertation. Thus, the 

tools, methodology, and resources presented here are tied together in following the initial 

analysis workflow for the thousands of organisms slated for sequencing in the near 

future.
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